bk<p>Key points :<br>1. To examine the influence of <a href="https://sfba.social/tags/news" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>news</span></a> source bias on <a href="https://sfba.social/tags/affective" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>affective</span></a> content and <a href="https://sfba.social/tags/virality" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>virality</span></a> over time, we applied <a href="https://sfba.social/tags/sentiment" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sentiment</span></a> analysis to a large <a href="https://sfba.social/tags/socialmedia" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>socialmedia</span></a> dataset over a decade (i.e., ~ 30 M twitter posts from 2011-2020).<br>2. Biased news sources on both sides produced more arousing negative affective content, and this content was also most viral.<br>3. Biased news sources may generate " <a href="https://sfba.social/tags/AffectivePollution" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AffectivePollution</span></a> ”, engaging users at the expense of their knowledge, well-being, and harmony. (2/3)</p>