toad.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Mastodon server operated by David Troy, a tech pioneer and investigative journalist addressing threats to democracy. Thoughtful participation and discussion welcome.

Administered by:

Server stats:

320
active users

#aperiodictiling

0 posts0 participants0 posts today
Constraints Journal<p>Happy Monday everyone!</p><p>Here's something to brighten up the start of your week: a paper about solving mathemusical problems with ILP and SAT, from our latest issue:</p><p>Computing aperiodic tiling rhythmic canons via SAT models<br><a href="https://link.springer.com/article/10.1007/s10601-024-09375-6" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">link.springer.com/article/10.1</span><span class="invisible">007/s10601-024-09375-6</span></a></p><p>To make this Monday extra sweet: the authors use MapleSAT!</p><p><a href="https://mastodon.acm.org/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> <br><a href="https://mastodon.acm.org/tags/Music" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Music</span></a> <br><a href="https://mastodon.acm.org/tags/ConstraintProgramming" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ConstraintProgramming</span></a><br><a href="https://mastodon.acm.org/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <br><a href="https://mastodon.acm.org/tags/Rhythm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Rhythm</span></a> <br><a href="https://mastodon.acm.org/tags/AcademicMastodon" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AcademicMastodon</span></a> <br><a href="https://mastodon.acm.org/tags/BooleanSatisfiability" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BooleanSatisfiability</span></a> <br><a href="https://mastodon.acm.org/tags/AperiodicTiling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AperiodicTiling</span></a> <br><a href="https://mastodon.acm.org/tags/MapleSAT" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MapleSAT</span></a><br><a href="https://mastodon.acm.org/tags/ILP" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ILP</span></a> <br><a href="https://mastodon.acm.org/tags/CombinatorialAlgorithms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CombinatorialAlgorithms</span></a> <br><a href="https://mastodon.acm.org/tags/ArtificialIntelligence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ArtificialIntelligence</span></a></p>
Deborah Pickett<p>Starting the next <a href="https://old.mermaid.town/tags/quilting" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>quilting</span></a> project. <a href="https://old.mermaid.town/tags/hat" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hat</span></a> <a href="https://old.mermaid.town/tags/textiles" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>textiles</span></a> <a href="https://old.mermaid.town/tags/FiberArts" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FiberArts</span></a> <a href="https://old.mermaid.town/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://old.mermaid.town/tags/tessellation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tessellation</span></a> <a href="https://old.mermaid.town/tags/AperiodicTiling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AperiodicTiling</span></a></p>
Craig Saila<p>Here's a more detailed article on the recently discovered non-repeating "einstein" shape — covers a lot more about the <a href="https://mastodon.social/tags/design" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>design</span></a> of <a href="https://mastodon.social/tags/AperiodicTiling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AperiodicTiling</span></a>, why <a href="https://mastodon.social/tags/The" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>The</span></a> Hat works, and how it was tested </p><p><a href="https://www.scientificamerican.com/article/newfound-mathematical-einstein-shape-creates-a-never-repeating-pattern/" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">scientificamerican.com/article</span><span class="invisible">/newfound-mathematical-einstein-shape-creates-a-never-repeating-pattern/</span></a></p>
Craig Saila<p><a href="https://mastodon.social/tags/Design" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Design</span></a> meets <a href="https://mastodon.social/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a>: A geometric shape that doesn't repeat itself when tiled may finally have been discovered — and its referred to as an 'einstein" shape, but not for the reasons you might guess</p><p><a href="https://mastodon.social/tags/TheHat" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TheHat</span></a> <a href="https://mastodon.social/tags/AperiodicTiling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AperiodicTiling</span></a> <a href="https://mastodon.social/tags/pattern" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pattern</span></a> </p><p><a href="https://phys.org/news/2023-03-geometric-tiled.html" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">phys.org/news/2023-03-geometri</span><span class="invisible">c-tiled.html</span></a></p>
Ivan Enderlin 🦀<p>An aperiodic monotile, <a href="https://arxiv.org/abs/2303.10798" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2303.10798</span><span class="invisible"></span></a>.</p><p>This is so awesome.</p><p><a href="https://fosstodon.org/tags/tiling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tiling</span></a> <a href="https://fosstodon.org/tags/AperiodicTiling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AperiodicTiling</span></a> <a href="https://fosstodon.org/tags/polyform" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polyform</span></a></p>
notsoloud<p>Around here, the brand new <a href="https://expressional.social/tags/aperiodictiling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>aperiodictiling</span></a> is already out as a puzzle!</p><p>Hoping to get the colored version going soon!</p><p>For more info <a href="https://cs.uwaterloo.ca/~csk/hat/" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="">cs.uwaterloo.ca/~csk/hat/</span><span class="invisible"></span></a></p><p><a href="https://expressional.social/tags/laserCutter" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>laserCutter</span></a> <a href="https://expressional.social/tags/making" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>making</span></a></p>
Karthik Srinivasan<p>Wow!! What a breathe of fresh air this paper is in the midst of suffocating levels of "AI solves everything" hype cycle. </p><p><a href="https://arxiv.org/abs/2303.10798" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2303.10798</span><span class="invisible"></span></a></p><p>They have found at long last, a single tile, an "einstein", which they call a "hat"/polykite that tiles the entire plane aperiodically. </p><p>Previously the best known aperiodic tiling of the plane required at the least two different tiles, the most famous ones being the Penrose tiles, and those that adorn Alhambra. </p><p>It is all the more wonderful that the first two authors don't have any academic/research affiliations. They write somewhere in the paper, how it all started, so wonderful: </p><p>"One of the authors (Smith) began investigating the hat polykite as part of his open-ended visual exploration of shapes and their tiling properties. Working largely by hand, with the assistance of Scherphuis’s PolyForm Puzzle Solver software (<a href="http://www.jaapsch.net/puzzles/polysolver.htm" rel="nofollow noopener noreferrer" target="_blank">www.jaapsch.net/puzzles/polysolver.htm</a>), he could find no obvious barriers to the construction of large patches, and yet no clear cluster of tiles that filled the plane periodically." </p><p>Why is the study of tilings such a big deal? Well, it hints at and tries to formalize various physics concepts that are of immense interest to many of us (and dare I say, even neuroscientists): quasi crystals!, possible new states of matter, emergent structures from simple units, how symmetries and asymmetries arise, stability of heterogenous media, soft matter physics, order without periodicity, criticality etc., etc., </p><p>On quasi-crystals and their search, applications, uses etc., I recommend the wonderful Paul Steinhardt's book: "The Second Kind of Impossible: The Extraordinary Quest for a New Form of Matter" </p><p><a href="https://neuromatch.social/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://neuromatch.social/tags/Maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Maths</span></a> <a href="https://neuromatch.social/tags/Combinatorics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Combinatorics</span></a> <a href="https://neuromatch.social/tags/AperiodicTiling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AperiodicTiling</span></a> <a href="https://neuromatch.social/tags/PenroseTiles" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PenroseTiles</span></a> <a href="https://neuromatch.social/tags/Einstein" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Einstein</span></a> <a href="https://neuromatch.social/tags/Emergence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Emergence</span></a> <a href="https://neuromatch.social/tags/condensedmatter" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>condensedmatter</span></a></p>