toad.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Mastodon server operated by David Troy, a tech pioneer and investigative journalist addressing threats to democracy. Thoughtful participation and discussion welcome.

Administered by:

Server stats:

206
active users

#datalabeling

0 posts0 participants0 posts today
Miguel Afonso Caetano<p>"Scale AI is basically a data annotation hub that does essential grunt work for the AI industry. To train an AI model, you need quality data. And for that data to mean anything, an AI model needs to know what it's looking at. Annotators manually go in and add that context.</p><p>As is the means du jour in corporate America, Scale AI built its business model on an army of egregiously underpaid gig workers, many of them overseas. The conditions have been described as "digital sweatshops," and many workers have accused Scale AI of wage theft.</p><p>It turns out this was not an environment for fostering high-quality work.</p><p>According to internal documents obtained by Inc, Scale AI's "Bulba Experts" program to train Google's AI systems was supposed to be staffed with authorities across relevant fields. But instead, during a chaotic 11 months between March 2023 and April 2024, its dubious "contributors" inundated the program with "spam," which was described as "writing gibberish, writing incorrect information, GPT-generated thought processes."</p><p>In many cases, the spammers, who were independent contractors who worked through Scale AI-owned platforms like Remotasks and Outlier, still got paid for submitting complete nonsense, according to former Scale contractors, since it became almost impossible to catch them all. And even if they did get caught, some would come back by simply using a VPN.</p><p>"People made so much money," a former contributor told Inc. "They just hired everybody who could breathe.""</p><p><a href="https://futurism.com/scale-ai-zuckerberg-incompetence" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">futurism.com/scale-ai-zuckerbe</span><span class="invisible">rg-incompetence</span></a></p><p><a href="https://tldr.nettime.org/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://tldr.nettime.org/tags/GenerativeAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenerativeAI</span></a> <a href="https://tldr.nettime.org/tags/Meta" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Meta</span></a> <a href="https://tldr.nettime.org/tags/ScaleAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScaleAI</span></a> <a href="https://tldr.nettime.org/tags/DataAnnotation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataAnnotation</span></a> <a href="https://tldr.nettime.org/tags/DataLabeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataLabeling</span></a> <a href="https://tldr.nettime.org/tags/GigWork" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GigWork</span></a></p>
Miguel Afonso Caetano<p>"The production of artificial intelligence (AI) requires human labour, with tasks ranging from well-paid engineering work to often-outsourced data work. This commentary explores the economic and policy implications of improving working conditions for AI data workers, specifically focusing on the impact of clearer task instructions and increased pay for data annotators. It contrasts rule-based and standard-based approaches to task instructions, revealing evidence-based practices for increasing accuracy in annotation and lowering task difficulty for annotators. AI developers have an economic incentive to invest in these areas as better annotation can lead to higher quality AI systems. The findings have broader implications for AI policy beyond the fairness of labour standards in the AI economy. Testing the design of annotation instructions is crucial for the development of annotation standards as a prerequisite for scientific review and effective human oversight of AI systems in protection of ethical values and fundamental rights."</p><p><a href="https://journals.sagepub.com/doi/10.1177/20539517251351320" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">journals.sagepub.com/doi/10.11</span><span class="invisible">77/20539517251351320</span></a></p><p><a href="https://tldr.nettime.org/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://tldr.nettime.org/tags/GenerativeAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenerativeAI</span></a> <a href="https://tldr.nettime.org/tags/DataWork" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataWork</span></a> <a href="https://tldr.nettime.org/tags/DataLabour" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataLabour</span></a> <a href="https://tldr.nettime.org/tags/AIPolicy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIPolicy</span></a> <a href="https://tldr.nettime.org/tags/PoliticalEconomy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PoliticalEconomy</span></a> <a href="https://tldr.nettime.org/tags/DataLabeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataLabeling</span></a> <a href="https://tldr.nettime.org/tags/AIEthics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIEthics</span></a> <a href="https://tldr.nettime.org/tags/DataAnnotation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataAnnotation</span></a></p>
Winbuzzer<p>Meta's Scale AI Gambit Ignites Exodus of Big-Tech Customers and AI Labs</p><p><a href="https://mastodon.social/tags/Meta" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Meta</span></a> <a href="https://mastodon.social/tags/ScaleAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScaleAI</span></a> <a href="https://mastodon.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://mastodon.social/tags/Google" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Google</span></a> <a href="https://mastodon.social/tags/BigTech" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BigTech</span></a> <a href="https://mastodon.social/tags/AITraing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AITraing</span></a> <a href="https://mastodon.social/tags/Zuckerberg" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Zuckerberg</span></a> <a href="https://mastodon.social/tags/AINeutrality" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AINeutrality</span></a> <a href="https://mastodon.social/tags/DataLabeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataLabeling</span></a></p><p><a href="https://winbuzzer.com/2025/06/19/metas-scale-ai-gambit-ignites-exodus-of-big-tech-customers-and-ai-labs-xcxwbn/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">winbuzzer.com/2025/06/19/metas</span><span class="invisible">-scale-ai-gambit-ignites-exodus-of-big-tech-customers-and-ai-labs-xcxwbn/</span></a></p>
WYM Mod<p>According to Reuters, a major shift is underway as Google plans to cut ties with Scale AI, its largest data-labeling partner, following Meta's acquisition of a 49% stake in Scale. This strategic move aims to protect proprietary interests amid rising competitive threats. As Google explores alternatives for AI services, this could significantly impact Scale's revenue and open doors for new competitors. Read more about the implications [here](<a href="https://www.cnbc.com/2025/06/14/google-scale-ais-largest-customer-plans-split-after-meta-deal.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">cnbc.com/2025/06/14/google-sca</span><span class="invisible">le-ais-largest-customer-plans-split-after-meta-deal.html</span></a>). Kudos to Reuters for the insightful coverage! <a href="https://mastodon.vtip.me/tags/Google" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Google</span></a> <a href="https://mastodon.vtip.me/tags/ScaleAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScaleAI</span></a> <a href="https://mastodon.vtip.me/tags/Meta" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Meta</span></a> <a href="https://mastodon.vtip.me/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://mastodon.vtip.me/tags/DataLabeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataLabeling</span></a> <a href="https://mastodon.vtip.me/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://mastodon.vtip.me/tags/BusinessStrategy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BusinessStrategy</span></a> <a href="https://mastodon.vtip.me/tags/Technology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Technology</span></a> <a href="https://mastodon.vtip.me/tags/Competitors" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Competitors</span></a></p>
PUPUWEB Blog<p>Google, Scale AI’s top client, is ending its partnership after Meta acquired a 49% stake in Scale. Microsoft, OpenAI, and xAI are also stepping back, prompting major shifts in AI data-labeling partnerships. <a href="https://mastodon.social/tags/Google" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Google</span></a> <a href="https://mastodon.social/tags/ScaleAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScaleAI</span></a> <a href="https://mastodon.social/tags/Meta" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Meta</span></a> <a href="https://mastodon.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://mastodon.social/tags/DataLabeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataLabeling</span></a> <a href="https://mastodon.social/tags/Microsoft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Microsoft</span></a> <a href="https://mastodon.social/tags/OpenAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenAI</span></a> <a href="https://mastodon.social/tags/xAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>xAI</span></a> <a href="https://mastodon.social/tags/TechNews" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TechNews</span></a></p>
ResearchBuzz: Firehose<p>TechXplore: Third-party data annotators often fail to accurately read the emotions of others, study finds. “Machine learning algorithms and large language models (LLMs), such as the model underpinning the functioning of the platform ChatGPT, have proved to be effective in tackling a wide range of tasks. These models are trained on various types of data (e.g., texts, images, videos, and/or […]</p><p><a href="https://rbfirehose.com/2025/05/22/techxplore-third-party-data-annotators-often-fail-to-accurately-read-the-emotions-of-others-study-finds/" class="" rel="nofollow noopener" target="_blank">https://rbfirehose.com/2025/05/22/techxplore-third-party-data-annotators-often-fail-to-accurately-read-the-emotions-of-others-study-finds/</a></p>
Gregor Weichbrodt<p>I created an offline-ready web app for labeling text data. Select a text file (one entry per line), and assign categories/labels to each entry. Your progress is automatically saved in your browser. Export labeled data as text files (again, one entry per line) or combined CSV. 1/🧵</p><p><a href="https://pickthing.ggor.de" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">pickthing.ggor.de</span><span class="invisible"></span></a></p><p><a href="https://chaos.social/tags/nlp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>nlp</span></a> <a href="https://chaos.social/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> <a href="https://chaos.social/tags/datalabeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datalabeling</span></a> <a href="https://chaos.social/tags/OfflineApp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OfflineApp</span></a> <a href="https://chaos.social/tags/WebApp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>WebApp</span></a> <a href="https://chaos.social/tags/react" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>react</span></a></p>
Miguel Afonso Caetano<p>"The familiar narrative is that artificial intelligence will take away human jobs: machine-learning will let cars, computers and chatbots teach themselves - making us humans obsolete. </p><p>Well, that's not very likely, and we're gonna tell you why. There's a growing global army of millions toiling to make AI run smoothly. They're called "humans in the loop:" people sorting, labeling, and sifting reams of data to train and improve AI for companies like Meta, OpenAI, Microsoft and Google. It's gruntwork that needs to be done accurately, fast, and - to do it cheaply – it's often farmed out to places like Africa – </p><p>Naftali Wambalo: The robots or the machines, you are teaching them how to think like human, to do things like human.</p><p>We met Naftali Wambalo in Nairobi, Kenya, one of the main hubs for this kind of work. It's a country desperate for jobs… because of an unemployment rate as high as 67% among young people. So Naftali, father of two, college educated with a degree in mathematics, was elated to finally find work in an emerging field: artificial intelligence."</p><p><a href="https://www.cbsnews.com/news/labelers-training-ai-say-theyre-overworked-underpaid-and-exploited-60-minutes-transcript/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">cbsnews.com/news/labelers-trai</span><span class="invisible">ning-ai-say-theyre-overworked-underpaid-and-exploited-60-minutes-transcript/</span></a></p><p><a href="https://tldr.nettime.org/tags/Kenya" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Kenya</span></a> <a href="https://tldr.nettime.org/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://tldr.nettime.org/tags/GenerativeAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenerativeAI</span></a> <a href="https://tldr.nettime.org/tags/Fauxtomation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Fauxtomation</span></a> <a href="https://tldr.nettime.org/tags/DataLabeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataLabeling</span></a> <a href="https://tldr.nettime.org/tags/OpenAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenAI</span></a> <a href="https://tldr.nettime.org/tags/Meta" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Meta</span></a></p>
Miguel Afonso Caetano<p><a href="https://tldr.nettime.org/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://tldr.nettime.org/tags/GenerativeAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenerativeAI</span></a> <a href="https://tldr.nettime.org/tags/LLMs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLMs</span></a> <a href="https://tldr.nettime.org/tags/AITraining" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AITraining</span></a> <a href="https://tldr.nettime.org/tags/DataLabeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataLabeling</span></a> <a href="https://tldr.nettime.org/tags/GigEconomy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GigEconomy</span></a>: "Who are the workers behind the training datasets powering the biggest LLMs on the market? In this explainer, we delve into data labeling as part of the AI supply chain, the labourers behind this data labeling, and how this exploitative labour ecosystem functions, aided by algorithms and larger systemic governance issues that exploit microworkers in the gig economy.</p><p>Key points:</p><p>- High quality training data is the crucial element for producing a performing LLM, and high quality training data is labeled datasets.</p><p>- Several digital labour platforms have arisen to the task of supplying data labeling for LLM training. However, a lack of transparency and use of algorithmic decision-making models undergirds their exploitative business models.</p><p>- Workers are often not informed about who or what they are labeling raw datasets for, and they are subjected to algorithmic surveillance and decision-making systems that facilitate unreliable job stability and unpredictable wages."</p><p><a href="https://privacyinternational.org/explainer/5357/humans-ai-loop-data-labelers-behind-some-most-powerful-llms-training-datasets" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">privacyinternational.org/expla</span><span class="invisible">iner/5357/humans-ai-loop-data-labelers-behind-some-most-powerful-llms-training-datasets</span></a></p>
Marco 🌳 Zocca<p>here's a little <a href="https://sigmoid.social/tags/htmx" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>htmx</span></a> extension to efficiently update Plotly charts: <a href="https://www.jsdelivr.com/package/gh/ocramz/htmx-plotly" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">jsdelivr.com/package/gh/ocramz</span><span class="invisible">/htmx-plotly</span></a></p><p>I needed this as a component for interactive data apps (for <a href="https://sigmoid.social/tags/datalabeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datalabeling</span></a> etc), as one who never found <a href="https://sigmoid.social/tags/react" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>react</span></a> and friends intuitive. <a href="https://sigmoid.social/tags/web" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>web</span></a> <a href="https://sigmoid.social/tags/webdev" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webdev</span></a> <a href="https://sigmoid.social/tags/frontend" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>frontend</span></a></p>
Erin Mikail Staples<p>IMPORTANT ANNOUNCEMENTS FROM MY DAY JOB! </p><p><a href="https://mastodon.social/tags/LabelStudio" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LabelStudio</span></a> 1.8.0 is now LIVE! 🚀</p><p>Optimized for fine-tuning datasets for LLMs and Foundational Models.✨</p><p>Check it out on the blog: </p><p><a href="https://labelstud.io/blog/introducing-label-studio-1-8-0/" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">labelstud.io/blog/introducing-</span><span class="invisible">label-studio-1-8-0/</span></a></p><p><a href="https://mastodon.social/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a> <a href="https://mastodon.social/tags/GenerativeAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenerativeAI</span></a> <a href="https://mastodon.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://mastodon.social/tags/DataLabeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataLabeling</span></a></p>
Nick Taylor<p>Looking forward to hanging with <span class="h-card"><a href="https://mastodon.social/@erinmikail" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>erinmikail</span></a></span> tomorrow, May 25th at 5:30 pm UTC!<br>We're going to be discussing open source data labeling and why it's important.<br>Come learn and hang with us!</p><p>Reminder: <a href="https://www.iamdeveloper.com/pages/stream-schedule/#erin-mikail-staples-open-source-data-labeling-and-why-it-s-important" rel="nofollow noopener" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">iamdeveloper.com/pages/stream-</span><span class="invisible">schedule/#erin-mikail-staples-open-source-data-labeling-and-why-it-s-important</span></a> <a href="https://toot.cafe/tags/opensource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opensource</span></a> <a href="https://toot.cafe/tags/datalabeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datalabeling</span></a></p>
Erin Mikail Staples<p>Some news from my day job this week! </p><p>the <a href="https://mastodon.social/tags/LabelStudio" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LabelStudio</span></a> April Community Newsletter is LIVE! </p><p>featuring: <br>- 🆕 releases<br>- 📝 blog post on the importance of data ethics<br>- highlights from the community team (that's <span class="h-card"><a href="https://mastodon.social/@hogepodge" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>hogepodge</span></a></span> + I!) </p><p>read all about it ➡️ <a href="https://labelstud.io/blog/april-2023-community-news/" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">labelstud.io/blog/april-2023-c</span><span class="invisible">ommunity-news/</span></a></p><p><a href="https://mastodon.social/tags/DataLabeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataLabeling</span></a> <a href="https://mastodon.social/tags/OpenSource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenSource</span></a> <a href="https://mastodon.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a></p>
Nick Taylor<p>Looking forward to hanging with <span class="h-card"><a href="https://mastodon.social/@erinmikail" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>erinmikail</span></a></span> from Heartex this Wednesday, April 26th at 5 pm UTC!</p><p>We're going to be discussing open source data labeling and why it's important.</p><p>Come learn and hang with us!</p><p>Reminder: <a href="https://iamdeveloper.com/schedule/#erin-mikail-staples-open-source-data-labeling-and-why-it-s-important" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">iamdeveloper.com/schedule/#eri</span><span class="invisible">n-mikail-staples-open-source-data-labeling-and-why-it-s-important</span></a></p><p><a href="https://toot.cafe/tags/opensource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opensource</span></a> <a href="https://toot.cafe/tags/datalabeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datalabeling</span></a></p>
Coach Pāṇini ®<p><span class="h-card"><a href="https://masto.ai/@unusual_whales" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>unusual_whales</span></a></span> <a href="https://mastodon.world/tags/datalabeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datalabeling</span></a> is janitorial work</p>