toad.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Mastodon server operated by David Troy, a tech pioneer and investigative journalist addressing threats to democracy. Thoughtful participation and discussion welcome.

Administered by:

Server stats:

320
active users

#hausdorffmeasure

0 posts0 participants0 posts today
Bharath Krishnan<p>I finally know what I want. </p><p>Let \(n\in\mathbb{N}\) and suppose function \(f:A\subseteq\mathbb{R}^{n}\to\mathbb{R}\), where \(A\) and \(f\) are Borel. Let \(\text{dim}_{\text{H}}(\cdot)\) be the Hausdorff dimension, where \(\mathcal{H}^{\text{dim}_{\text{H}}(\cdot)}(\cdot)\) is the Hausdorff measure in its dimension on the Borel \(\sigma\)-algebra.</p><p>§1. Motivation</p><p>Suppose, we define everywhere surjective \(f\):</p><p>Let \((A,\mathrm{T})\) be a standard topology. A function \(f:A\subseteq\mathbb{R}^{n}\to\mathbb{R}\) is everywhere surjective from \(A\) to \(\mathbb{R}\), if \(f[V]=\mathbb{R}\) for every \(V\in\mathrm{T}\).</p><p>If f is everywhere surjective, whose graph has zero Hausdorff measure in its dimension (e.g., [1]), we want a unique, satisfying [2] average of \(f\), taking finite values only. However, the expected value of \(f\):</p><p>\[\mathbb{E}[f]=\frac{1}{{\mathcal{H}}^{\text{dim}_{\text{H}}(A)}(A)}\int_{A}f\, d{\mathcal{H}}^{\text{dim}_{\text{H}}(A)}\]</p><p>is undefined since the integral of \(f\) is undefined: i.e., the graph of \(f\) has Hausdorff dimension \(n+1\) with zero \((n+1)\)-dimensional Hausdorff measure. Thus, w.r.t a reference point \(C\in\mathbb{R}^{n+1}\), choose any sequence of bounded functions converging to \(f\) [2, §2.1] with the same satisfying [2, §4] and finite expected value [2, §2.2].</p><p>[1]: <a href="https://mathoverflow.net/questions/476471/is-there-an-explicit-everywhere-surjective-f-mathbbr-to-mathbbr-whose-gr" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">mathoverflow.net/questions/476</span><span class="invisible">471/is-there-an-explicit-everywhere-surjective-f-mathbbr-to-mathbbr-whose-gr</span></a></p><p>[2]: <a href="https://www.researchgate.net/publication/389499633_Defining_a_Unique_Satisfying_Expected_Value_From_Chosen_Sequences_of_Bounded_Functions_Converging_to_an_Everywhere_Surjective_Function/stats" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">researchgate.net/publication/3</span><span class="invisible">89499633_Defining_a_Unique_Satisfying_Expected_Value_From_Chosen_Sequences_of_Bounded_Functions_Converging_to_an_Everywhere_Surjective_Function/stats</span></a></p><p><a href="https://mathstodon.xyz/tags/HausdorffMeasure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HausdorffMeasure</span></a> <a href="https://mathstodon.xyz/tags/HausdorffDimension" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HausdorffDimension</span></a> <br><a href="https://mathstodon.xyz/tags/EverywhereSurjectiveFunction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>EverywhereSurjectiveFunction</span></a><br><a href="https://mathstodon.xyz/tags/ExpectedValue" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ExpectedValue</span></a><br><a href="https://mathstodon.xyz/tags/Average" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Average</span></a> <br><a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>research</span></a></p>
Bharath Krishnan<p>Question 1. was solved here [1]. The answer isn't perfect but it's better than nothing.</p><p>I don't know if the function in the answer to this post [1] has a finite expected value using section 3.2 and 6.1 of this paper [2].</p><p>[1]: <a href="https://mathoverflow.net/questions/476471/is-there-an-explicit-everywhere-surjective-f-mathbbr-to-mathbbr-whose-gr/476609#476609" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">mathoverflow.net/questions/476</span><span class="invisible">471/is-there-an-explicit-everywhere-surjective-f-mathbbr-to-mathbbr-whose-gr/476609#476609</span></a></p><p>[2]: <a href="https://www.researchgate.net/publication/382557954_Finding_a_Published_Research_Paper_Which_Meaningfully_Averages_the_Most_Pathalogical_Functions" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">researchgate.net/publication/3</span><span class="invisible">82557954_Finding_a_Published_Research_Paper_Which_Meaningfully_Averages_the_Most_Pathalogical_Functions</span></a></p><p><a href="https://mathstodon.xyz/tags/Answer" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Answer</span></a> <a href="https://mathstodon.xyz/tags/PathalogicalFunctions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PathalogicalFunctions</span></a> <a href="https://mathstodon.xyz/tags/EverywhereSurjectiveFunctions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>EverywhereSurjectiveFunctions</span></a> <a href="https://mathstodon.xyz/tags/Mean" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mean</span></a> <a href="https://mathstodon.xyz/tags/ExpectedValue" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ExpectedValue</span></a> <a href="https://mathstodon.xyz/tags/MeasureTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MeasureTheory</span></a> <a href="https://mathstodon.xyz/tags/HausdorffMeasure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HausdorffMeasure</span></a> <a href="https://mathstodon.xyz/tags/HausdorffDimension" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HausdorffDimension</span></a></p>
Bharath Krishnan<p>Suppose \(A\subseteq\mathbb{R}^{2}\) is Borel and \(B\) is a rectangle of \(\mathbb{R}^2\). In addition, suppose the Lebesgue measure on the Borel \(\sigma\)-algebra is \(\lambda(\cdot)\):</p><p>Question: How do we define an explicit \(A\), such that:<br>1. \(\lambda(A\cap B)&gt;0\) for all \(B\)<br>2. \(\lambda(A\cap B)\neq\lambda(B)\) for all \(B\)?</p><p>For a potential answer, see this reddit post [1]. (It seems the answer is correct; however, I wonder if there's a simpler version that is less annoying to prove.)</p><p>Moreover, we meaningfully average \(A\) with the following approach:</p><p>Approach: We want an unique, satisfying extension of the expected value of \(A\), w.r.t the Hausdorff measure in its dimension, on bounded sets to \(A\), which takes finite values only</p><p>Question 2: How do we define "satisfying" in this approach? </p><p>(Optional: See section 3.2, &amp; 6 of this paper [2].)</p><p>[1]: <a href="https://www.reddit.com/r/mathematics/comments/1eedqbx/is_there_a_set_with_positive_lebesgue_measure_in/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">reddit.com/r/mathematics/comme</span><span class="invisible">nts/1eedqbx/is_there_a_set_with_positive_lebesgue_measure_in/</span></a></p><p>[2]: <a href="https://www.researchgate.net/publication/382994255_Finding_a_Published_Research_Paper_Which_Meaningfully_Averages_The_Most_Pathalogical_Sets" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">researchgate.net/publication/3</span><span class="invisible">82994255_Finding_a_Published_Research_Paper_Which_Meaningfully_Averages_The_Most_Pathalogical_Sets</span></a></p><p><a href="https://mathstodon.xyz/tags/UnboundedSets" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UnboundedSets</span></a> <a href="https://mathstodon.xyz/tags/Sets" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Sets</span></a> <a href="https://mathstodon.xyz/tags/LebesgueMeasure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LebesgueMeasure</span></a> <a href="https://mathstodon.xyz/tags/MeasureTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MeasureTheory</span></a> <a href="https://mathstodon.xyz/tags/Measure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Measure</span></a> <a href="https://mathstodon.xyz/tags/ExpectedValue" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ExpectedValue</span></a> <a href="https://mathstodon.xyz/tags/Expectancy" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Expectancy</span></a> <a href="https://mathstodon.xyz/tags/Mean" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mean</span></a> <a href="https://mathstodon.xyz/tags/Integration" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Integration</span></a> <a href="https://mathstodon.xyz/tags/HausdorffMeasure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HausdorffMeasure</span></a> <a href="https://mathstodon.xyz/tags/HausdorffDimension" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HausdorffDimension</span></a></p>
Bharath Krishnan<p>Suppose \(f:\mathbb{R}\to\mathbb{R}\) is Borel. Let \(\text{dim}_{\text{H}}(\cdot)\) be the Hausdorff dimension and \(\mathcal{H}^{\text{dim}_{\text{H}}(\cdot)}(\cdot)\) be the Hausdorff measure in its dimension on the Borel \(\sigma\)-algebra.</p><p>Question: If \(G\) is the graph of \(f\), is there an explicit \(f\) such that:<br>1. The function \(f\) is everywhere surjective (i.e., \(f[(a,b)]=\mathbb{R}\) for all non-empty open interval \((a,b)\))<br>2. \(\mathcal{H}^{\text{dim}_{\text{H}}(G)}(G)=0\)</p><p>If such \(f\) exists, we denote this special case of \(f\) as \(F\).</p><p>Note, not all everywhere surjective \(f\) satisfy criteria 2. of the question. For example, consider the Conway base-13 function [1]. Since it's zero almost everywhere, \(\text{dim}_{\text{H}}(G)=1\), and \(\mathcal{H}^{\text{dim}_{\text{H}}(G)}(G)=+\infty\).</p><p>Question 2: For any real \(\mathbf{A},\mathbf{B}\) is the expected value of \(\left.f\right|_{[\mathbf{A},\mathbf{B}]}\), w.r.t the Hausdorff measure in its dimension, defined and finite? </p><p>If not, see this paper [2] for a partial solution. </p><p>Optional: Is there other interesting properties of \(F\)?</p><p>[1]: <a href="https://en.wikipedia.org/wiki/Conway_base_13_function" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Conway_b</span><span class="invisible">ase_13_function</span></a></p><p>[2]: <a href="https://www.researchgate.net/publication/382557954_Finding_a_Published_Research_Paper_Which_Meaningfully_Averages_the_Most_Pathalogical_Functions/stats" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">researchgate.net/publication/3</span><span class="invisible">82557954_Finding_a_Published_Research_Paper_Which_Meaningfully_Averages_the_Most_Pathalogical_Functions/stats</span></a></p><p><a href="https://mathstodon.xyz/tags/PathalogicalFunctions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PathalogicalFunctions</span></a> <a href="https://mathstodon.xyz/tags/EverywhereSurjectiveFunctions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>EverywhereSurjectiveFunctions</span></a> <a href="https://mathstodon.xyz/tags/Mean" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mean</span></a> <a href="https://mathstodon.xyz/tags/ExpectedValue" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ExpectedValue</span></a> <a href="https://mathstodon.xyz/tags/MeasureTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MeasureTheory</span></a> <a href="https://mathstodon.xyz/tags/Measure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Measure</span></a> <a href="https://mathstodon.xyz/tags/HausdorffMeasure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HausdorffMeasure</span></a> <a href="https://mathstodon.xyz/tags/HausdorffDimension" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HausdorffDimension</span></a></p>