toad.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Mastodon server operated by David Troy, a tech pioneer and investigative journalist addressing threats to democracy. Thoughtful participation and discussion welcome.

Administered by:

Server stats:

291
active users

#rag

5 posts4 participants0 posts today
Alvin Ashcraft 🐿️<p>The Future of AI: Evaluating and optimizing custom RAG agents using Azure AI Foundry</p><p><a href="https://techcommunity.microsoft.com/blog/azure-ai-foundry-blog/the-future-of-ai-evaluating-and-optimizing-custom-rag-agents-using-azure-ai-foun/4455215" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">techcommunity.microsoft.com/bl</span><span class="invisible">og/azure-ai-foundry-blog/the-future-of-ai-evaluating-and-optimizing-custom-rag-agents-using-azure-ai-foun/4455215</span></a></p><p><a href="https://hachyderm.io/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://hachyderm.io/tags/azure" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>azure</span></a> <a href="https://hachyderm.io/tags/cloud" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cloud</span></a> <a href="https://hachyderm.io/tags/azureaifoundry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>azureaifoundry</span></a> <a href="https://hachyderm.io/tags/rag" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rag</span></a> <a href="https://hachyderm.io/tags/aiagents" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aiagents</span></a></p>
Major Hayden 🤠<p>Wow, <a href="https://tootloop.com/tags/docling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>docling</span></a> added support for Arabic and can handle complex documents with text that goes right to left!</p><p><a href="https://tootloop.com/tags/devconf_us" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>devconf_us</span></a> <a href="https://tootloop.com/tags/devconfus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>devconfus</span></a> <a href="https://tootloop.com/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://tootloop.com/tags/rag" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rag</span></a></p>
Major Hayden 🤠<p>Here's a recap of my <a href="https://tootloop.com/tags/devconf_us" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>devconf_us</span></a> talk from yesterday along with a link to slides and the recording:</p><p><a href="https://major.io/p/devconf-rag/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">major.io/p/devconf-rag/</span><span class="invisible"></span></a></p><p><a href="https://tootloop.com/tags/devconf" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>devconf</span></a> <a href="https://tootloop.com/tags/rag" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rag</span></a> <a href="https://tootloop.com/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://tootloop.com/tags/presentation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>presentation</span></a> <a href="https://tootloop.com/tags/talks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>talks</span></a></p>
Stefan Müller :verified:<p>Cool! So soll das sein. Nichts halluziniert. Wenn das Ding nichts weiß, dann sagt es auch nichts und es gibt Quellen!</p><p>Allerdings steht da irgendwo, dass es Dativ und Akkusativ gibt. Da muss ich noch weiterbasteln.</p><p><a href="https://climatejustice.social/tags/Hackaton" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Hackaton</span></a> <a href="https://climatejustice.social/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> <a href="https://climatejustice.social/tags/KI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>KI</span></a></p>
techbash<p>You want AI? We've got some great AI sessions this year at TechBash. Rich Ross is presenting 2 great sessions on GraphRAG and GenAI architecture.</p><p>Register by 10/3 and save $100 on Standard registration with code LASTCALL100 - <a href="https://techbash.zohobackstage.com/techbash2025#/buyTickets?promoCode=LASTCALL100" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">techbash.zohobackstage.com/tec</span><span class="invisible">hbash2025#/buyTickets?promoCode=LASTCALL100</span></a> </p><p><a href="https://social.vivaldi.net/tags/devconference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>devconference</span></a> <a href="https://social.vivaldi.net/tags/techbash" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>techbash</span></a> <a href="https://social.vivaldi.net/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://social.vivaldi.net/tags/rag" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rag</span></a> <a href="https://social.vivaldi.net/tags/cloud" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cloud</span></a> <a href="https://social.vivaldi.net/tags/techevent" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>techevent</span></a></p>
Technology Tales<p>5 creative RAG projects for beginners: Build with open-source models, create multimodal systems for PDFs with images/tables, develop on-device RAG with ObjectBox, construct real-time pipelines using Neo4j knowledge graphs, and implement agentic RAG with Llama-Index for multi-step reasoning. <a href="https://mstdn.social/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> <a href="https://mstdn.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://mstdn.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://mstdn.social/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a> <a href="https://mstdn.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://mstdn.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://mstdn.social/tags/BeginnerProjects" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BeginnerProjects</span></a> <a href="https://mstdn.social/tags/TechTutorials" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TechTutorials</span></a> <a href="https://www.kdnuggets.com/5-fun-rag-projects-for-absolute-beginners" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">kdnuggets.com/5-fun-rag-projec</span><span class="invisible">ts-for-absolute-beginners</span></a></p>
Alex P Roe<p><span class="h-card" translate="no"><a href="https://mastodon.world/@ApostateEnglishman" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>ApostateEnglishman</span></a></span> <span class="h-card" translate="no"><a href="https://c.im/@dpnash" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>dpnash</span></a></span> <span class="h-card" translate="no"><a href="https://mastodon.green/@gerrymcgovern" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>gerrymcgovern</span></a></span> <a href="https://mastodon.world/tags/ChatGPT" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ChatGPT</span></a> now uses something called <a href="https://mastodon.world/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> - which basically links to sources on the web - this reduces the probability of the <a href="https://mastodon.world/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a> making information up.</p>
Xavier Mareca<p>🚀 New LangChain Cheatsheet!<br>Build smarter LLM apps in Python with real examples:<br>✅ Chains &amp; Agents<br>✅ Memory &amp; Retrieval<br>✅ LangGraph<br>✅ API tools &amp; RAG</p><p>Code-ready, clean &amp; useful.<br>7-day thread starts tomorrow 🧠🧵</p><p><a href="https://mastodon.social/tags/LangChain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangChain</span></a> <a href="https://mastodon.social/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a> <a href="https://mastodon.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://mastodon.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://mastodon.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://mastodon.social/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> <a href="https://mastodon.social/tags/GenerativeAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenerativeAI</span></a></p>
AI Sparkup<p><strong>GraphRAG로 AI가 드디어 ‘진짜 똑똑해졌다’ – 기업들이 열광하는 이유</strong></p> 기존 RAG의 한계를 극복한 GraphRAG 기술이 어떻게 작동하며, 실제 기업들이 어떤 성과를 내고 있는지, 그리고 우리 회사에서는 어떻게 도입할 수 있는지 실용적으로 설명한 완전 정복 가이드 <p><a href="https://aisparkup.com/posts/4652" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">aisparkup.com/posts/4652</span><span class="invisible"></span></a></p>
MottG<p>"Structuring PubMed Content into Knowledge Graphs for Enhanced Biomedical Intelligence"</p><p>This dissertation introduces the Genomic Literature Knowledge Base (GLKB), a large-scale biomedical knowledge graph curated from over 33 million PubMed articles. GLKB supports retrieval-augmented generation (RAG) methods that improve factuality and reduce hallucination. </p><p><a href="https://deepblue.lib.umich.edu/handle/2027.42/199147" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">deepblue.lib.umich.edu/handle/</span><span class="invisible">2027.42/199147</span></a></p><p>GLKB can be accessed at:</p><p><a href="https://glkb.dcmb.med.umich.edu/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">glkb.dcmb.med.umich.edu/</span><span class="invisible"></span></a></p><p><a href="https://researchbuzz.masto.host/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a> <a href="https://researchbuzz.masto.host/tags/medicine" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>medicine</span></a> <a href="https://researchbuzz.masto.host/tags/genomics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>genomics</span></a> <a href="https://researchbuzz.masto.host/tags/Pubmed" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Pubmed</span></a> <a href="https://researchbuzz.masto.host/tags/AItools" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AItools</span></a> <a href="https://researchbuzz.masto.host/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a></p>
Knut 🏳️‍🌈 🇳🇴🧸<p>If someone wants to <a href="https://mstdn.social/tags/rag" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rag</span></a> the <a href="https://mstdn.social/tags/epstein" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>epstein</span></a> shit into an <a href="https://mstdn.social/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a> here ya go. I'm not going to poke through all of this. I'll wait for CNN to get me the juicies. :D <a href="https://drive.google.com/drive/folders/1TrGxDGQLDLZu1vvvZDBAh-e7wN3y6Hoz" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">drive.google.com/drive/folders</span><span class="invisible">/1TrGxDGQLDLZu1vvvZDBAh-e7wN3y6Hoz</span></a></p>
Benjamin Han<p>5/n</p><p>REFERENCES</p><p>[1] Orion Weller, Michael Boratko, Iftekhar Naim, and Jinhyuk Lee. 2025. On the theoretical limitations of embedding-based retrieval. <a href="https://arxiv.org/abs/2508.21038" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2508.21038</span><span class="invisible"></span></a> </p><p>[2] Yifu Qiu, Varun Embar, Yizhe Zhang, Navdeep Jaitly, Shay B. Cohen, and Benjamin Han. 2025. Eliciting in-context Retrieval and reasoning for long-context large language models. <a href="https://machinelearning.apple.com/research/eliciting-in-context" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">machinelearning.apple.com/rese</span><span class="invisible">arch/eliciting-in-context</span></a> repo: <a href="https://github.com/apple/ml-icr2" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">github.com/apple/ml-icr2</span><span class="invisible"></span></a></p><p><a href="https://sigmoid.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://sigmoid.social/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a> <a href="https://sigmoid.social/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> <a href="https://sigmoid.social/tags/Embeddings" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Embeddings</span></a> <a href="https://sigmoid.social/tags/Retrieval" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Retrieval</span></a> <a href="https://sigmoid.social/tags/RecSys" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RecSys</span></a> <a href="https://sigmoid.social/tags/Search" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Search</span></a> <a href="https://sigmoid.social/tags/AgenticAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AgenticAI</span></a> <a href="https://sigmoid.social/tags/paper" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>paper</span></a></p>
Benjamin Han<p>4/</p><p>4. Three ways out: (1) Cross-encoders—placing docs in the prompt of a Long-Context LM; accurate but costly. (2) Multi-vector retrieval. (3) Sparse retrieval.</p><p>For cross-encoders, this links directly to our earlier work on ICR² [2], where combining training data design with model re-architecting improved retrieval performance (see picture 4). Many other paths remain open!</p><p><a href="https://sigmoid.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://sigmoid.social/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a> <a href="https://sigmoid.social/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> <a href="https://sigmoid.social/tags/Embeddings" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Embeddings</span></a> <a href="https://sigmoid.social/tags/Retrieval" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Retrieval</span></a> <a href="https://sigmoid.social/tags/RecSys" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RecSys</span></a> <a href="https://sigmoid.social/tags/Search" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Search</span></a> <a href="https://sigmoid.social/tags/AgenticAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AgenticAI</span></a> <a href="https://sigmoid.social/tags/paper" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>paper</span></a></p>
Benjamin Han<p>3/</p><p>3. LIMIT dataset: To stress-test real models, they construct the LIMIT dataset consisting of 50k docs and 1k queries, each with 2 relevant docs (picture1). All single-vector models fail badly, while BM25 and multi-vector methods perform much better (see picture 2).</p><p><a href="https://sigmoid.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://sigmoid.social/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a> <a href="https://sigmoid.social/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> <a href="https://sigmoid.social/tags/Embeddings" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Embeddings</span></a> <a href="https://sigmoid.social/tags/Retrieval" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Retrieval</span></a> <a href="https://sigmoid.social/tags/RecSys" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RecSys</span></a> <a href="https://sigmoid.social/tags/Search" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Search</span></a> <a href="https://sigmoid.social/tags/AgenticAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AgenticAI</span></a> <a href="https://sigmoid.social/tags/paper" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>paper</span></a></p>
Benjamin Han<p>2/</p><p>2. Oracle experiment: They empirically confirm this bound by directly optimizing embeddings (“free embeddings”) against the relevance matrix. The critical corpus size grows only cubically with dimension. For example, with embedding dimension d = 1024, you can only represent all possible 2-doc query combinations up to about 4 million documents — far below typical web-scale retrieval needs.</p><p><a href="https://sigmoid.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://sigmoid.social/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a> <a href="https://sigmoid.social/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> <a href="https://sigmoid.social/tags/Embeddings" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Embeddings</span></a> <a href="https://sigmoid.social/tags/Retrieval" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Retrieval</span></a> <a href="https://sigmoid.social/tags/RecSys" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RecSys</span></a> <a href="https://sigmoid.social/tags/Search" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Search</span></a> <a href="https://sigmoid.social/tags/AgenticAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AgenticAI</span></a> <a href="https://sigmoid.social/tags/paper" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>paper</span></a></p>
Benjamin Han<p>1/</p><p>Embeddings are the beating heart of modern AI—powering RAG and serving as memory for agentic AI. But a new paper [1] shows a ceiling:</p><p>1. Dot-product retrieval is bounded by embedding dimension d; if the relevance matrix has sign-rank r, then d &gt;= r is required—and no amount of training can avoid it.</p><p><a href="https://sigmoid.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://sigmoid.social/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a> <a href="https://sigmoid.social/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> <a href="https://sigmoid.social/tags/Embeddings" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Embeddings</span></a> <a href="https://sigmoid.social/tags/Retrieval" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Retrieval</span></a> <a href="https://sigmoid.social/tags/RecSys" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RecSys</span></a> <a href="https://sigmoid.social/tags/Search" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Search</span></a> <a href="https://sigmoid.social/tags/AgenticAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AgenticAI</span></a> <a href="https://sigmoid.social/tags/paper" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>paper</span></a></p>
Robbie<p>Tired of your knowledge base being a static, dumb folder of Markdown files? I built `vault-mcp` to fix that.</p><p>It's a local RAG server that watches your notes and live-syncs changes using a file-level Merkle tree (so it only re-indexes what's new).</p><p>You can query in "static" mode (fast, full-section context) or "agentic" mode (LLM rewrites chunks for clarity).</p><p>Full write-up + quick-start:<br><a href="https://selfenrichment.hashnode.dev/vault-mcp-a-scrappy-self-updating-rag-server-for-your-markdown-hoard" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">selfenrichment.hashnode.dev/va</span><span class="invisible">ult-mcp-a-scrappy-self-updating-rag-server-for-your-markdown-hoard</span></a><br><a href="https://mastodon.social/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> <a href="https://mastodon.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://mastodon.social/tags/OpenSource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenSource</span></a> <a href="https://mastodon.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://mastodon.social/tags/SelfHosting" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SelfHosting</span></a></p>
Joe Cotellese<p>New fav AI tool: Google NotebookLM. I can upload research papers and get an instant expert to chat with. Yes it’s <a href="https://jawns.club/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> but with extra goodies. Generate mindmaps, exec overviews, video explainers and podcasts. Have Google Workspaces account? You may already have access.</p><p><a href="https://jawns.club/tags/generativeai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>generativeai</span></a> <a href="https://jawns.club/tags/ml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ml</span></a></p>
Deutschland<p><a href="https://www.europesays.com/de/354088/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">europesays.com/de/354088/</span><span class="invisible"></span></a> Neue Azubis in Essen bei Ruhrkohle AG #"GuteNachrichten"] #"Lokalnachrichten" #"NeueAzubis"] <a href="https://pubeurope.com/tags/Ausbildung" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Ausbildung</span></a> <a href="https://pubeurope.com/tags/DE" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DE</span></a> <a href="https://pubeurope.com/tags/Deutschland" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deutschland</span></a> <a href="https://pubeurope.com/tags/Essen" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Essen</span></a> <a href="https://pubeurope.com/tags/Germany" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Germany</span></a> <a href="https://pubeurope.com/tags/NordrheinWestfalen" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NordrheinWestfalen</span></a> <a href="https://pubeurope.com/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a></p>
infoDOCKET<p>Research Article (preprint): “A Systematic Literature Review of Retrieval-Augmented Generation: Techniques, Metrics, and Challenges” <a href="https://www.infodocket.com/2025/08/11/research-article-preprint-a-systematic-literature-review-of-retrieval-augmented-generation-techniques-metrics-and-challenges/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">infodocket.com/2025/08/11/rese</span><span class="invisible">arch-article-preprint-a-systematic-literature-review-of-retrieval-augmented-generation-techniques-metrics-and-challenges/</span></a> <a href="https://newsie.social/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> <a href="https://newsie.social/tags/LLMs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLMs</span></a> <a href="https://newsie.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a></p>