toad.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Mastodon server operated by David Troy, a tech pioneer and investigative journalist addressing threats to democracy. Thoughtful participation and discussion welcome.

Administered by:

Server stats:

218
active users

#SignRelations

0 posts0 participants0 posts today
Jon Awbrey<p>References —</p><p>Dewey, J. (1910), How We Think, D.C. Heath, Boston, MA. Reprinted (1991), Prometheus Books, Buffalo, NY.<br>• <a href="https://www.gutenberg.org/files/37423/37423-h/37423-h.htm" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">gutenberg.org/files/37423/3742</span><span class="invisible">3-h/37423-h.htm</span></a></p><p>Awbrey, J.L., and Awbrey, S.M. (1995), “Interpretation as Action : The Risk of Inquiry”, Inquiry : Critical Thinking Across the Disciplines 15(1), 40–52.<br>• <a href="https://web.archive.org/web/20001210162300/http://chss.montclair.edu/inquiry/fall95/awbrey.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">web.archive.org/web/2000121016</span><span class="invisible">2300/http://chss.montclair.edu/inquiry/fall95/awbrey.html</span></a><br>• <a href="https://www.pdcnet.org/inquiryct/content/inquiryct_1995_0015_0001_0040_0052" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">pdcnet.org/inquiryct/content/i</span><span class="invisible">nquiryct_1995_0015_0001_0040_0052</span></a> <br>• <a href="https://www.academia.edu/1266493/Interpretation_as_Action_The_Risk_of_Inquiry" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">academia.edu/1266493/Interpret</span><span class="invisible">ation_as_Action_The_Risk_of_Inquiry</span></a><br>• <a href="https://www.academia.edu/57812482/Interpretation_as_Action_The_Risk_of_Inquiry" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">academia.edu/57812482/Interpre</span><span class="invisible">tation_as_Action_The_Risk_of_Inquiry</span></a></p><p>Resources —</p><p>Survey of Inquiry Driven Systems<br>• <a href="https://inquiryintoinquiry.com/2024/02/28/survey-of-inquiry-driven-systems-6/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/02</span><span class="invisible">/28/survey-of-inquiry-driven-systems-6/</span></a></p><p>Survey of Semiotics, Semiosis, Sign Relations<br>• <a href="https://inquiryintoinquiry.com/2024/01/26/survey-of-semiotics-semiosis-sign-relations-5/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/01</span><span class="invisible">/26/survey-of-semiotics-semiosis-sign-relations-5/</span></a></p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/Semiosis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiosis</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/TriadicRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TriadicRelations</span></a> <br><a href="https://mathstodon.xyz/tags/Cybersemiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Cybersemiotics</span></a> <a href="https://mathstodon.xyz/tags/Interpreter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Interpreter</span></a> <a href="https://mathstodon.xyz/tags/Interpretant" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Interpretant</span></a> <a href="https://mathstodon.xyz/tags/Hermeneutics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Hermeneutics</span></a> <a href="https://mathstodon.xyz/tags/Hermenaut" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Hermenaut</span></a> <br><a href="https://mathstodon.xyz/tags/JohnDewey" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JohnDewey</span></a> <a href="https://mathstodon.xyz/tags/HowWeThink" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HowWeThink</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Induction</span></a> <br><a href="https://mathstodon.xyz/tags/Abstraction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abstraction</span></a> <a href="https://mathstodon.xyz/tags/HypostaticAbstraction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HypostaticAbstraction</span></a> <a href="https://mathstodon.xyz/tags/Reflection" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Reflection</span></a> <a href="https://mathstodon.xyz/tags/Interpretation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Interpretation</span></a></p>
Jon Awbrey<p>Interpreter and Interpretant • Selection 4<br>• <a href="https://inquiryintoinquiry.com/2025/01/09/interpreter-and-interpretant-selection-4-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2025/01</span><span class="invisible">/09/interpreter-and-interpretant-selection-4-a/</span></a></p><p>Interpretation and Inquiry —</p><p>To illustrate the role of sign relations in inquiry we begin with Dewey's elegant and simple example of reflective thinking in everyday life.</p><p>❝A man is walking on a warm day. The sky was clear the last time he observed it; but presently he notes, while occupied primarily with other things, that the air is cooler. It occurs to him that it is probably going to rain; looking up, he sees a dark cloud between him and the sun, and he then quickens his steps. What, if anything, in such a situation can be called thought? Neither the act of walking nor the noting of the cold is a thought. Walking is one direction of activity; looking and noting are other modes of activity. The likelihood that it will rain is, however, something suggested. The pedestrian feels the cold; he thinks of clouds and a coming shower.❞ (John Dewey, How We Think, 6–7).</p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/Semiosis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiosis</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/TriadicRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TriadicRelations</span></a> <br><a href="https://mathstodon.xyz/tags/Cybersemiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Cybersemiotics</span></a> <a href="https://mathstodon.xyz/tags/Interpreter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Interpreter</span></a> <a href="https://mathstodon.xyz/tags/Interpretant" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Interpretant</span></a> <a href="https://mathstodon.xyz/tags/Hermeneutics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Hermeneutics</span></a> <a href="https://mathstodon.xyz/tags/Hermenaut" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Hermenaut</span></a> <br><a href="https://mathstodon.xyz/tags/JohnDewey" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JohnDewey</span></a> <a href="https://mathstodon.xyz/tags/HowWeThink" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HowWeThink</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Induction</span></a> <br><a href="https://mathstodon.xyz/tags/Abstraction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abstraction</span></a> <a href="https://mathstodon.xyz/tags/HypostaticAbstraction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HypostaticAbstraction</span></a> <a href="https://mathstodon.xyz/tags/Reflection" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Reflection</span></a> <a href="https://mathstodon.xyz/tags/Interpretation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Interpretation</span></a></p>
Jon Awbrey<p>Interpreter and Interpretant • Selection 1<br>• <a href="https://inquiryintoinquiry.com/2025/01/06/interpreter-and-interpretant-selection-1-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2025/01</span><span class="invisible">/06/interpreter-and-interpretant-selection-1-a/</span></a></p><p>Questions about the relationship between “interpreters” and “interpretants” in Peircean semiotics have broken out again. To put the matter as pointedly as possible — because I know someone or other is bound to — “In a theory of three‑place relations among objects, signs, and interpretant signs, where indeed is there any place for the interpretive agent?”</p><p>By way of getting my feet on the ground with the issue I'll do what always helped me before and review a small set of basic texts. Here is the first.</p><p>Figure 1. The Sign Relation in Aristotle<br>• <a href="https://inquiryintoinquiry.files.wordpress.com/2022/04/awbrey-awbrey-1995-e280a2-figure-1.png" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.files.wordp</span><span class="invisible">ress.com/2022/04/awbrey-awbrey-1995-e280a2-figure-1.png</span></a></p><p>❝Words spoken are symbols or signs (symbola) of affections or impressions (pathemata) of the soul (psyche); written words are the signs of words spoken. As writing, so also is speech not the same for all races of men. But the mental affections themselves, of which these words are primarily signs (semeia), are the same for the whole of mankind, as are also the objects (pragmata) of which those affections are representations or likenesses, images, copies (homoiomata).❞ (Aristotle, De Interp. i. 16a4).</p><p>References —</p><p>Aristotle, “On Interpretation” (De Interp.), Harold P. Cooke (trans.), pp. 111–179 in Aristotle, Volume 1, Loeb Classical Library, William Heinemann, London, UK, 1938.</p><p>Awbrey, J.L., and Awbrey, S.M. (1995), “Interpretation as Action : The Risk of Inquiry”, Inquiry : Critical Thinking Across the Disciplines 15(1), 40–52.<br>• <a href="https://web.archive.org/web/20001210162300/http://chss.montclair.edu/inquiry/fall95/awbrey.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">web.archive.org/web/2000121016</span><span class="invisible">2300/http://chss.montclair.edu/inquiry/fall95/awbrey.html</span></a><br>• <a href="https://www.pdcnet.org/inquiryct/content/inquiryct_1995_0015_0001_0040_0052" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">pdcnet.org/inquiryct/content/i</span><span class="invisible">nquiryct_1995_0015_0001_0040_0052</span></a> <br>• <a href="https://www.academia.edu/1266493/Interpretation_as_Action_The_Risk_of_Inquiry" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">academia.edu/1266493/Interpret</span><span class="invisible">ation_as_Action_The_Risk_of_Inquiry</span></a><br>• <a href="https://www.academia.edu/57812482/Interpretation_as_Action_The_Risk_of_Inquiry" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">academia.edu/57812482/Interpre</span><span class="invisible">tation_as_Action_The_Risk_of_Inquiry</span></a></p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/TriadicRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TriadicRelations</span></a> <br><a href="https://mathstodon.xyz/tags/Aristotle" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Aristotle</span></a> <a href="https://mathstodon.xyz/tags/Hermeneutics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Hermeneutics</span></a> <a href="https://mathstodon.xyz/tags/Interpretation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Interpretation</span></a> <a href="https://mathstodon.xyz/tags/Interpretant" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Interpretant</span></a></p>
Jon Awbrey<p>Information = Comprehension × Extension • Selection 1.2<br>• <a href="https://inquiryintoinquiry.com/2024/10/05/information-comprehension-x-extension-selection-1-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/10</span><span class="invisible">/05/information-comprehension-x-extension-selection-1-a/</span></a></p><p>❝Thus, let us commence with the term “colour”; add to the comprehension of this term, that of “red”. “Red colour” has considerably less extension than “colour”; add to this the comprehension of “dark”; “dark red colour” has still less [extension]. Add to this the comprehension of “non‑blue” — “non‑blue dark red colour” has the same extension as “dark red colour”, so that the “non‑blue” here performs a work of supererogation; it tells us that no “dark red colour” is blue, but does none of the proper business of connotation, that of diminishing the extension at all. Thus information measures the superfluous comprehension. And, hence, whenever we make a symbol to express any thing or any attribute we cannot make it so empty that it shall have no superfluous comprehension.</p><p>❝I am going, next, to show that inference is symbolization and that the puzzle of the validity of scientific inference lies merely in this superfluous comprehension and is therefore entirely removed by a consideration of the laws of “information”.❞</p><p>(Peirce 1866, p. 467)</p><p>Reference —</p><p>Peirce, C.S. (1866), “The Logic of Science, or, Induction and Hypothesis”, Lowell Lectures of 1866, pp. 357–504 in Writings of Charles S. Peirce : A Chronological Edition, Volume 1, 1857–1866, Peirce Edition Project, Indiana University Press, Bloomington, IN, 1982.</p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Inference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inference</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Induction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/LogicOfScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LogicOfScience</span></a> <br><a href="https://mathstodon.xyz/tags/Information" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Information</span></a> <a href="https://mathstodon.xyz/tags/Comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Comprehension</span></a> <a href="https://mathstodon.xyz/tags/Extension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Extension</span></a> <a href="https://mathstodon.xyz/tags/InformationEqualsComprehensionTimesExtension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InformationEqualsComprehensionTimesExtension</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Icon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Icon</span></a> <a href="https://mathstodon.xyz/tags/Index" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Index</span></a> <a href="https://mathstodon.xyz/tags/Symbol" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Symbol</span></a> <a href="https://mathstodon.xyz/tags/PragmaticSemioticInformation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PragmaticSemioticInformation</span></a></p>
Jon Awbrey<p>Information = Comprehension × Extension • Selection 1.1<br>• <a href="https://inquiryintoinquiry.com/2024/10/05/information-comprehension-x-extension-selection-1-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/10</span><span class="invisible">/05/information-comprehension-x-extension-selection-1-a/</span></a></p><p>Our first text comes from Peirce's Lowell Lectures of 1866, titled “The Logic of Science, or, Induction and Hypothesis”. I still remember the first time I read these words and the light that lit up the page and my mind.</p><p>❝Let us now return to the information. The information of a term is the measure of its superfluous comprehension. That is to say that the proper office of the comprehension is to determine the extension of the term. For instance, you and I are men because we possess those attributes — having two legs, being rational, &amp;c. — which make up the comprehension of “man”. Every addition to the comprehension of a term lessens its extension up to a certain point, after that further additions increase the information instead.❞</p><p>(Peirce 1866, p. 467)</p><p>Reference —</p><p>Peirce, C.S. (1866), “The Logic of Science, or, Induction and Hypothesis”, Lowell Lectures of 1866, pp. 357–504 in Writings of Charles S. Peirce : A Chronological Edition, Volume 1, 1857–1866, Peirce Edition Project, Indiana University Press, Bloomington, IN, 1982.</p><p>Resources —</p><p>Inquiry Blog • Survey of Pragmatic Semiotic Information<br>• <a href="https://inquiryintoinquiry.com/2024/03/01/survey-of-pragmatic-semiotic-information-8/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/03</span><span class="invisible">/01/survey-of-pragmatic-semiotic-information-8/</span></a></p><p>OEIS Wiki • Information = Comprehension × Extension<br>• <a href="https://oeis.org/wiki/Information_%3D_Comprehension_%C3%97_Extension" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Information_%3D_</span><span class="invisible">Comprehension_%C3%97_Extension</span></a></p><p>C.S. Peirce • Upon Logical Comprehension and Extension<br>• <a href="https://peirce.sitehost.iu.edu/writings/v2/w2/w2_06/v2_06.htm" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">peirce.sitehost.iu.edu/writing</span><span class="invisible">s/v2/w2/w2_06/v2_06.htm</span></a></p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Inference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inference</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Induction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/LogicOfScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LogicOfScience</span></a> <br><a href="https://mathstodon.xyz/tags/Information" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Information</span></a> <a href="https://mathstodon.xyz/tags/Comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Comprehension</span></a> <a href="https://mathstodon.xyz/tags/Extension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Extension</span></a> <a href="https://mathstodon.xyz/tags/InformationEqualsComprehensionTimesExtension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InformationEqualsComprehensionTimesExtension</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Icon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Icon</span></a> <a href="https://mathstodon.xyz/tags/Index" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Index</span></a> <a href="https://mathstodon.xyz/tags/Symbol" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Symbol</span></a> <a href="https://mathstodon.xyz/tags/PragmaticSemioticInformation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PragmaticSemioticInformation</span></a></p>
Jon Awbrey<p>Information = Comprehension × Extension • Preamble<br>• <a href="https://inquiryintoinquiry.com/2024/10/04/information-comprehension-x-extension-preamble/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/10</span><span class="invisible">/04/information-comprehension-x-extension-preamble/</span></a></p><p>Eight summers ago I hit on what struck me as a new insight into one of the most recalcitrant problems in Peirce’s semiotics and logic of science, namely, the relation between “the manner in which different representations stand for their objects” and the way in which different inferences transform states of information. I roughed out a sketch of my epiphany in a series of blog posts then set it aside for the cool of later reflection. Now looks to be a choice moment for taking another look.</p><p>A first pass through the variations of representation and reasoning detects the axes of iconic, indexical, and symbolic manners of representation on the one hand and the axes of abductive, inductive, and deductive modes of inference on the other. Early and often Peirce suggests a natural correspondence between the main modes of inference and the main manners of representation but his early arguments differ from his later accounts in ways deserving close examination, partly for the extra points in his line of reasoning and partly for his explanation of indices as signs constituted by convening the variant conceptions of sundry interpreters.</p><p>Resources —</p><p>Inquiry Blog • Survey of Pragmatic Semiotic Information<br>• <a href="https://inquiryintoinquiry.com/2024/03/01/survey-of-pragmatic-semiotic-information-8/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/03</span><span class="invisible">/01/survey-of-pragmatic-semiotic-information-8/</span></a></p><p>OEIS Wiki • Information = Comprehension × Extension<br>• <a href="https://oeis.org/wiki/Information_%3D_Comprehension_%C3%97_Extension" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Information_%3D_</span><span class="invisible">Comprehension_%C3%97_Extension</span></a></p><p>C.S. Peirce • Upon Logical Comprehension and Extension<br>• <a href="https://peirce.sitehost.iu.edu/writings/v2/w2/w2_06/v2_06.htm" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">peirce.sitehost.iu.edu/writing</span><span class="invisible">s/v2/w2/w2_06/v2_06.htm</span></a></p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Inference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inference</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Induction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/LogicOfScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LogicOfScience</span></a> <br><a href="https://mathstodon.xyz/tags/Information" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Information</span></a> <a href="https://mathstodon.xyz/tags/Comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Comprehension</span></a> <a href="https://mathstodon.xyz/tags/Extension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Extension</span></a> <a href="https://mathstodon.xyz/tags/InformationEqualsComprehensionTimesExtension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InformationEqualsComprehensionTimesExtension</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Icon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Icon</span></a> <a href="https://mathstodon.xyz/tags/Index" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Index</span></a> <a href="https://mathstodon.xyz/tags/Symbol" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Symbol</span></a> <a href="https://mathstodon.xyz/tags/PragmaticSemioticInformation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PragmaticSemioticInformation</span></a></p>
Jon Awbrey<p>Survey of Semiotics, Semiosis, Sign Relations • 5<br>• <a href="https://inquiryintoinquiry.com/2024/01/26/survey-of-semiotics-semiosis-sign-relations-5/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/01</span><span class="invisible">/26/survey-of-semiotics-semiosis-sign-relations-5/</span></a></p><p>C.S. Peirce defines “logic” as “formal semiotic”, using “formal” to distinguish the role of logic as a normative science, over and above the descriptive study of signs and their role in wider fields of play. Understanding logic as Peirce understands it thus requires a companion study of semiotics, semiosis, and sign relations.</p><p>What follows is a Survey of blog and wiki resources on the theory of signs, variously known as “semeiotic” or “semiotics”, and the actions referred to as “semiosis” which transform signs among themselves in relation to their objects, all as based on C.S. Peirce's concept of triadic sign relations.</p><p>Please follow the above link for the full set of resources.<br>Articles and blog series on the core ideas are linked below.</p><p>Elements —</p><p>• Semeiotic ( <a href="https://oeis.org/wiki/Semeiotic" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">oeis.org/wiki/Semeiotic</span><span class="invisible"></span></a> )</p><p>• Sign Relations ( <a href="https://oeis.org/wiki/Sign_relation" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">oeis.org/wiki/Sign_relation</span><span class="invisible"></span></a> )</p><p>Sources —</p><p>C.S. Peirce • On the Definition of Logic<br>• <a href="https://inquiryintoinquiry.com/2012/06/01/c-s-peirce-on-the-definition-of-logic/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2012/06</span><span class="invisible">/01/c-s-peirce-on-the-definition-of-logic/</span></a></p><p>C.S. Peirce • Logic as Semiotic<br>• <a href="https://inquiryintoinquiry.com/2012/06/04/c-s-peirce-logic-as-semiotic/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2012/06</span><span class="invisible">/04/c-s-peirce-logic-as-semiotic/</span></a></p><p>C.S. Peirce • Objective Logic<br>• <a href="https://inquiryintoinquiry.com/2012/03/09/c-s-peirce-objective-logic/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2012/03</span><span class="invisible">/09/c-s-peirce-objective-logic/</span></a></p><p>Blog Series —</p><p>• Semeiotic ( <a href="https://inquiryintoinquiry.com/2008/07/30/semeiotic/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2008/07</span><span class="invisible">/30/semeiotic/</span></a> )</p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/LogicAsSemiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LogicAsSemiotics</span></a> <a href="https://mathstodon.xyz/tags/Semeiotic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semeiotic</span></a> <a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/Semiosis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiosis</span></a> <br><a href="https://mathstodon.xyz/tags/RelationTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RelationTheory</span></a> <a href="https://mathstodon.xyz/tags/InterpretiveFrameworks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InterpretiveFrameworks</span></a> <a href="https://mathstodon.xyz/tags/ObjectiveFrameworks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ObjectiveFrameworks</span></a> <br><a href="https://mathstodon.xyz/tags/SystemsOfInterpretation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SystemsOfInterpretation</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/TriadicRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TriadicRelations</span></a></p>
Jon Awbrey<p>In the Way of Inquiry • Objections to Reflexive Inquiry 2<br>• <a href="https://inquiryintoinquiry.com/2023/02/05/in-the-way-of-inquiry-objections-to-reflexive-inquiry-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2023/02</span><span class="invisible">/05/in-the-way-of-inquiry-objections-to-reflexive-inquiry-a/</span></a></p><p>Our agent of inquiry is brought to the threshold of two questions:</p><p>• What actions are available to achieve the aims of the present activity?</p><p>• What assumptions already accepted are advisable to amend or abandon?</p><p>The inquirer is faced in the object of inquiry with an obstinately oppositional state of affairs, a character marked by the Greek word “pragma” for “object”, whose manifold of senses and derivatives includes among its connotations the ideas of purposeful objectives and problematic objections, and not too incidentally both inquiries and expositions.</p><p>Overview<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Overview" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Overview</span></a> </p><p>Obstacles<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Part_5#Obstacles" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Part_5#Obstacles</span></a> </p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryIntoInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryIntoInquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryDrivenSystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryDrivenSystems</span></a> <br><a href="https://mathstodon.xyz/tags/Anomaly" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Anomaly</span></a> <a href="https://mathstodon.xyz/tags/Doubt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Doubt</span></a> <a href="https://mathstodon.xyz/tags/Discrepancy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Discrepancy</span></a> <a href="https://mathstodon.xyz/tags/Dispersion" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Dispersion</span></a> <a href="https://mathstodon.xyz/tags/Entropy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Entropy</span></a> <a href="https://mathstodon.xyz/tags/Uncertainty" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Uncertainty</span></a> <br><a href="https://mathstodon.xyz/tags/Interruption" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Interruption</span></a> <a href="https://mathstodon.xyz/tags/Obstruction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Obstruction</span></a> <a href="https://mathstodon.xyz/tags/Information" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Information</span></a> <a href="https://mathstodon.xyz/tags/Comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Comprehension</span></a> <a href="https://mathstodon.xyz/tags/Extension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Extension</span></a> <br><a href="https://mathstodon.xyz/tags/Pragma" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Pragma</span></a> <a href="https://mathstodon.xyz/tags/Pragmata" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Pragmata</span></a> <a href="https://mathstodon.xyz/tags/Purpose" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Purpose</span></a> <a href="https://mathstodon.xyz/tags/Objective" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Objective</span></a> <a href="https://mathstodon.xyz/tags/Problem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Problem</span></a> <a href="https://mathstodon.xyz/tags/Objection" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Objection</span></a> <a href="https://mathstodon.xyz/tags/Praxis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Praxis</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Semiositis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiositis</span></a> <a href="https://mathstodon.xyz/tags/Reflection" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Reflection</span></a> <a href="https://mathstodon.xyz/tags/SelfApplication" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SelfApplication</span></a></p>
Jon Awbrey<p>In the Way of Inquiry • Reconciling Accounts<br>• <a href="https://inquiryintoinquiry.com/2023/01/24/in-the-way-of-inquiry-reconciling-accounts-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2023/01</span><span class="invisible">/24/in-the-way-of-inquiry-reconciling-accounts-a/</span></a></p><p>The Reader may share with the Author a feeling of discontent at this point, attempting to reconcile the formal intentions of this inquiry with the cardinal contentions of experience. Let me try to express the difficulty in the form of a question:</p><p>What is the bond between form and content in experience, between the abstract formal categories and the concrete material contents residing in experience?</p><p>Once toward the end of my undergrad years a professor asked me how I'd personally define mathematics and I told him I saw it as “the form of experience and the experience of form”. This is not the place to argue for the virtues of that formulation but it does afford me one of the handles I have on the bond between form and content in experience.</p><p>I have no more than a tentative way of approaching the question. I take there to be a primitive category of “form‑in‑experience” — I don’t have a handy name for it yet but it looks to have a flexible nature which from the standpoint of a given agent easily passes from the “structure of experience” to the “experience of structure”.</p><p>Overview<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Overview" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Overview</span></a> </p><p>Obstacles<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Part_5#Obstacles" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Part_5#Obstacles</span></a> </p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryIntoInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryIntoInquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryDrivenSystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryDrivenSystems</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Semiositis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiositis</span></a> <a href="https://mathstodon.xyz/tags/ObstaclesToInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ObstaclesToInquiry</span></a> <br><a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Induction</span></a> <a href="https://mathstodon.xyz/tags/ScientificMethod" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScientificMethod</span></a> <br><a href="https://mathstodon.xyz/tags/Experience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Experience</span></a> <a href="https://mathstodon.xyz/tags/Expectation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Expectation</span></a> <a href="https://mathstodon.xyz/tags/EffectiveDescription" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>EffectiveDescription</span></a> <a href="https://mathstodon.xyz/tags/FiniteMeans" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FiniteMeans</span></a> <br><a href="https://mathstodon.xyz/tags/Abstraction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abstraction</span></a> <a href="https://mathstodon.xyz/tags/Analogy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Analogy</span></a> <a href="https://mathstodon.xyz/tags/Form" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Form</span></a> <a href="https://mathstodon.xyz/tags/Matter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Matter</span></a> <a href="https://mathstodon.xyz/tags/Empiricism" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Empiricism</span></a> <a href="https://mathstodon.xyz/tags/Rationalism" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Rationalism</span></a> <br><a href="https://mathstodon.xyz/tags/Concretion" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Concretion</span></a> <a href="https://mathstodon.xyz/tags/Information" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Information</span></a> <a href="https://mathstodon.xyz/tags/Comprehension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Comprehension</span></a> <a href="https://mathstodon.xyz/tags/Extension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Extension</span></a> <a href="https://mathstodon.xyz/tags/Intension" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Intension</span></a></p>
Jon Awbrey<p>In the Way of Inquiry • Material Exigency 2<br>• <a href="https://inquiryintoinquiry.com/2023/01/20/in-the-way-of-inquiry-material-exigency-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2023/01</span><span class="invisible">/20/in-the-way-of-inquiry-material-exigency-a/</span></a></p><p>A turn of events so persistent must have a cause, a force of reason to explain the dynamics of its recurring moment in the history of ideas. The nub of it's not born on the sleeve of its first and last stages, where the initial explosion and the final collapse march along their stubborn course in lockstep fashion, but is embodied more naturally in the middle of the above narrative.</p><p>Experience exposes and explodes expectations. How can experiences impact expectations unless the two types of entities are both reflected in one medium, for instance and perhaps without loss of generality, in the form of representation constituting the domain of signs?</p><p>However complex its world may be, internal or external to itself or on the boundaries of its being, a finite creature's description of it rests in a finite number of finite terms or a finite sketch of finite lines. Finite terms and lines are signs. What they indicate need not be finite but what they are, must be.</p><p>Fragments —</p><p>The common sensorium.</p><p>The common sense and the senses of “common”.</p><p>This is the point where the empirical and the rational meet.</p><p>I describe as “empirical” any method which exposes theoretical descriptions of an object to further experience with that object.</p><p>Overview<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Overview" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Overview</span></a> </p><p>Obstacles<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Part_5#Obstacles" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Part_5#Obstacles</span></a> </p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryIntoInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryIntoInquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryDrivenSystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryDrivenSystems</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Semiositis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiositis</span></a> <a href="https://mathstodon.xyz/tags/ObstaclesToInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ObstaclesToInquiry</span></a> <br><a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Induction</span></a> <a href="https://mathstodon.xyz/tags/ScientificMethod" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScientificMethod</span></a> <br><a href="https://mathstodon.xyz/tags/Experience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Experience</span></a> <a href="https://mathstodon.xyz/tags/Expectation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Expectation</span></a> <a href="https://mathstodon.xyz/tags/EffectiveDescription" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>EffectiveDescription</span></a> <a href="https://mathstodon.xyz/tags/FiniteMeans" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FiniteMeans</span></a> <br><a href="https://mathstodon.xyz/tags/Abstraction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abstraction</span></a> <a href="https://mathstodon.xyz/tags/Analogy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Analogy</span></a> <a href="https://mathstodon.xyz/tags/Form" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Form</span></a> <a href="https://mathstodon.xyz/tags/Matter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Matter</span></a> <a href="https://mathstodon.xyz/tags/Empiricism" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Empiricism</span></a> <a href="https://mathstodon.xyz/tags/Rationalism" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Rationalism</span></a></p>
Jon Awbrey<p>In the Way of Inquiry • Material Exigency 1<br>• <a href="https://inquiryintoinquiry.com/2023/01/20/in-the-way-of-inquiry-material-exigency-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2023/01</span><span class="invisible">/20/in-the-way-of-inquiry-material-exigency-a/</span></a></p><p>Our survey of obstacles to inquiry has dealt at length with blocks arising from its formal aspects. On the other hand, I have cast this project as an empirical inquiry, proposing to represent experimental hypotheses in the form of computer programs. At the heart of that empirical attitude is a feeling all formal theories should arise from and bear on experience.</p><p>Every season of growth in empirical knowledge begins with a rush to the sources of experience. Every fresh‑thinking reed of intellect is raised to pipe up and chime in with the still‑viable canons of inquiry in one glorious paean to the personal encounter with natural experience.</p><p>But real progress in the community of inquiry depends on observers being able to orient themselves to objects of common experience — the uncontrolled exaltation of individual phenomenologies leads as a rule to the disappointment and disillusionment which befalls the lot of unshared enthusiasms and fragmented impressions.</p><p>Look again at the end of the season and see it faltering to a close, with every novice scribe rapped on the knuckles for departing from that uninspired identification with impersonal authority which expresses itself in third‑person passive accounts of one's own experience.</p><p>Overview<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Overview" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Overview</span></a> </p><p>Obstacles<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Part_5#Obstacles" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Part_5#Obstacles</span></a> </p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryIntoInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryIntoInquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryDrivenSystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryDrivenSystems</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Semiositis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiositis</span></a> <a href="https://mathstodon.xyz/tags/ObstaclesToInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ObstaclesToInquiry</span></a> <br><a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Induction</span></a> <a href="https://mathstodon.xyz/tags/ScientificMethod" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScientificMethod</span></a> <br><a href="https://mathstodon.xyz/tags/Abstraction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abstraction</span></a> <a href="https://mathstodon.xyz/tags/Analogy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Analogy</span></a> <a href="https://mathstodon.xyz/tags/Form" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Form</span></a> <a href="https://mathstodon.xyz/tags/Matter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Matter</span></a> <a href="https://mathstodon.xyz/tags/Empiricism" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Empiricism</span></a> <a href="https://mathstodon.xyz/tags/Rationalism" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Rationalism</span></a></p>
Jon Awbrey<p>In the Way of Inquiry • Formal Apology 4<br>• <a href="https://inquiryintoinquiry.com/2023/01/12/in-the-way-of-inquiry-formal-apology-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2023/01</span><span class="invisible">/12/in-the-way-of-inquiry-formal-apology-a/</span></a></p><p>Interpretive Frameworks —</p><p>Iterations of the recombinatorial process generate alternative hierarchies of categories for controlling the explosion of parts in the domain under inquiry. If by some piece of luck an alternative framework is uniquely suited to the natural ontology of the domain in question, it becomes advisable to reorganize the inquiry along the lines of the new topic headings.</p><p>But a complex domain seldom falls out that neatly. The new interpretive framework will not preserve all the information in the object domain but typically capture only another aspect of it. To take the maximal advantage of all the different frameworks that might be devised it is best to quit depending on any one of them exclusively. Thus, a rigid reliance on a single hierarchy to define the ontology of a given domain passes over into a flexible application of interpretive frameworks to make contact with particular aspects of one's object domain.</p><p>Overview<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Overview" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Overview</span></a> </p><p>Obstacles<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Part_5#Obstacles" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Part_5#Obstacles</span></a> </p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryIntoInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryIntoInquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryDrivenSystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryDrivenSystems</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Semiositis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiositis</span></a> <a href="https://mathstodon.xyz/tags/ObstaclesToInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ObstaclesToInquiry</span></a> <br><a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Induction</span></a> <a href="https://mathstodon.xyz/tags/ScientificMethod" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScientificMethod</span></a> <br><a href="https://mathstodon.xyz/tags/Abstraction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abstraction</span></a> <a href="https://mathstodon.xyz/tags/Analogy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Analogy</span></a> <a href="https://mathstodon.xyz/tags/Form" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Form</span></a> <a href="https://mathstodon.xyz/tags/Matter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Matter</span></a> <a href="https://mathstodon.xyz/tags/Paradigms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Paradigms</span></a> <a href="https://mathstodon.xyz/tags/Pragmatics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Pragmatics</span></a> <br><a href="https://mathstodon.xyz/tags/Aristotle" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Aristotle</span></a> <a href="https://mathstodon.xyz/tags/Categories" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Categories</span></a> <a href="https://mathstodon.xyz/tags/Complexity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Complexity</span></a> <a href="https://mathstodon.xyz/tags/InterpretiveFrameworks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InterpretiveFrameworks</span></a></p>
Jon Awbrey<p>In the Way of Inquiry • Formal Apology 3<br>• <a href="https://inquiryintoinquiry.com/2023/01/12/in-the-way-of-inquiry-formal-apology-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2023/01</span><span class="invisible">/12/in-the-way-of-inquiry-formal-apology-a/</span></a></p><p>Explosional Recombinations —</p><p>Another obstacle to inquiry is posed by the combinatorial explosion of questions arising in complex cases. The embarrassment of riches found here is deceptively deadly to the ends of inquiry in the very measure it appears so productive at first. An eye to form provides a way to manage the wealth of material diversity by identifying formal similarities among materially distinct domains. It allows the same formal answer to unify a host of concrete questions under a single roof, overall reducing the number of distinct topics that need to be covered.</p><p>Overview<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Overview" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Overview</span></a> </p><p>Obstacles<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Part_5#Obstacles" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Part_5#Obstacles</span></a> </p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryIntoInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryIntoInquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryDrivenSystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryDrivenSystems</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Semiositis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiositis</span></a> <a href="https://mathstodon.xyz/tags/ObstaclesToInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ObstaclesToInquiry</span></a> <br><a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Induction</span></a> <a href="https://mathstodon.xyz/tags/ScientificMethod" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScientificMethod</span></a> <br><a href="https://mathstodon.xyz/tags/Abstraction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abstraction</span></a> <a href="https://mathstodon.xyz/tags/Form" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Form</span></a> <a href="https://mathstodon.xyz/tags/Isomorphism" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Isomorphism</span></a> <a href="https://mathstodon.xyz/tags/Combinatorics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Combinatorics</span></a> <a href="https://mathstodon.xyz/tags/Complexity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Complexity</span></a></p>
Jon Awbrey<p>In the Way of Inquiry • Formal Apology 2<br>• <a href="https://inquiryintoinquiry.com/2023/01/12/in-the-way-of-inquiry-formal-apology-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2023/01</span><span class="invisible">/12/in-the-way-of-inquiry-formal-apology-a/</span></a></p><p>Conceptual Extensions —</p><p>The second use of the formal apology is to permit the tentative extension of concepts to novel areas, giving them experimental trial beyond the cases and domains where their use is already established in the precedents of accustomed habit and successful application.</p><p>This works to dispel the “in principle” objection that any category distinction puts a prior constraint on the recognition of similar structure between materially dissimilar domains. It leaves the issue a matter to be settled by after the fact judgment, a matter of what fits best “in practice”.</p><p>Overview<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Overview" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Overview</span></a> </p><p>Obstacles<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Part_5#Obstacles" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Part_5#Obstacles</span></a> </p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryIntoInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryIntoInquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryDrivenSystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryDrivenSystems</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Semiositis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiositis</span></a> <a href="https://mathstodon.xyz/tags/ObstaclesToInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ObstaclesToInquiry</span></a> <br><a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Induction</span></a> <a href="https://mathstodon.xyz/tags/ScientificMethod" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScientificMethod</span></a> <br><a href="https://mathstodon.xyz/tags/Abstraction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abstraction</span></a> <a href="https://mathstodon.xyz/tags/Analogy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Analogy</span></a> <a href="https://mathstodon.xyz/tags/Form" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Form</span></a> <a href="https://mathstodon.xyz/tags/Matter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Matter</span></a> <a href="https://mathstodon.xyz/tags/Paradigms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Paradigms</span></a> <a href="https://mathstodon.xyz/tags/Pragmatics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Pragmatics</span></a></p>
Jon Awbrey<p>In the Way of Inquiry • Formal Apology 1<br>• <a href="https://inquiryintoinquiry.com/2023/01/12/in-the-way-of-inquiry-formal-apology-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2023/01</span><span class="invisible">/12/in-the-way-of-inquiry-formal-apology-a/</span></a></p><p>Using “form” in the sense of abstract structure, the focus of my interest in this investigation is limited to the formal properties of the inquiry process. Among its chief constituents are numbered all the thinking and unthinking processes supporting the ability to learn and to reason. This “formal apology”, the apologetics of declaring a decidedly formal intent, will be used on numerous occasions to beg off a host of material difficulties and thus avoid the perceived necessity of meeting a multitude of conventional controversies.</p><p>Category Double‑Takes —</p><p>The first use of the formal apology is to rehabilitate certain classes of associations between concepts otherwise marked as category mistakes. The conversion is achieved by flipping from one side of the concept’s dual aspect to the other as the context demands. Thus it is possible in selected cases to reform the characters of category mistakes in the manner of categorical “retakes” or “double‑takes”.</p><p>Overview<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Overview" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Overview</span></a> </p><p>Obstacles<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Part_5#Obstacles" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Part_5#Obstacles</span></a> </p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryIntoInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryIntoInquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryDrivenSystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryDrivenSystems</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Semiositis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiositis</span></a> <a href="https://mathstodon.xyz/tags/ObstaclesToInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ObstaclesToInquiry</span></a> <br><a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Induction</span></a> <a href="https://mathstodon.xyz/tags/ScientificMethod" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScientificMethod</span></a> <br><a href="https://mathstodon.xyz/tags/Abstraction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abstraction</span></a> <a href="https://mathstodon.xyz/tags/Analogy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Analogy</span></a> <a href="https://mathstodon.xyz/tags/Form" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Form</span></a> <a href="https://mathstodon.xyz/tags/Matter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Matter</span></a> <a href="https://mathstodon.xyz/tags/Aristotle" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Aristotle</span></a> <a href="https://mathstodon.xyz/tags/Categories" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Categories</span></a></p>
Jon Awbrey<p>In the Way of Inquiry • Justification Trap<br>• <a href="https://inquiryintoinquiry.com/2023/01/10/in-the-way-of-inquiry-justification-trap-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2023/01</span><span class="invisible">/10/in-the-way-of-inquiry-justification-trap-a/</span></a></p><p>There is a particular type of “justification trap” a person can fall into, of trying to prove the scientific method by deductive means alone, that is, of trying to show the scientific method is a good method by starting from the simplest possible axioms, principles everyone would accept, about what is good.</p><p>Often this happens, despite the fact one really knows better, simply in the process of arranging one's thoughts in a rational order, say, from the most elementary and independent to the most complex and derivative, as if for the sake of a logical and summary exposition. But when does that rearrangement cease to be a rational reconstruction and start to become a destructive rationalization, a distortion of the genuine article, and a falsification of the authentic inquiry it attempts to recount?</p><p>Sometimes people express their recognition of this trap and their appreciation of the factor it takes to escape it by saying there is really no such thing as the scientific method, that the very term “scientific method” is a misnomer and does not refer to any uniform method at all. As they see it, the development of knowledge cannot be reduced to any fixed method because it involves in an essential way such a large component of non‑methodical activity. If one's idea of what counts as method is fixed on the ideal of a deductive procedure then it's no surprise one draws that conclusion.</p><p>Overview<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Overview" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Overview</span></a> </p><p>Obstacles<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Part_5#Obstacles" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Part_5#Obstacles</span></a> </p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryIntoInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryIntoInquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryDrivenSystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryDrivenSystems</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Semiositis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiositis</span></a> <a href="https://mathstodon.xyz/tags/ObstaclesToInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ObstaclesToInquiry</span></a> <br><a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Induction</span></a> <a href="https://mathstodon.xyz/tags/ScientificMethod" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScientificMethod</span></a></p>
Jon Awbrey<p>In the Way of Inquiry • Initial&nbsp;Unpleasantness<br>• <a href="https://inquiryintoinquiry.com/2023/01/08/in-the-way-of-inquiry-initial-unpleasantness-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2023/01</span><span class="invisible">/08/in-the-way-of-inquiry-initial-unpleasantness-a/</span></a></p><p>Clouds and thunder:<br>The image of Difficulty at the Beginning.<br>Thus the superior man<br>Brings order out of confusion.</p><p>— I Ching ䷂ Hexagram 3</p><p>Inquiry begins in doubt, a debit of certainty and a drought of information, never a pleasant condition to acknowledge, and one of the primary obstacles to inquiry may be reckoned as owing to the onus one naturally feels on owning up to that debt. Human nature far prefers to revel in the positive features of whatever scientific knowledge it already possesses and the mind defers as long as possible the revolt it feels arising on facing the uncertainties that still persist, the “nots” and “not yets” it cannot as yet and ought not deny.</p><p>Reference —</p><p>The I Ching, or Book of Changes, R. Wilhelm and C.F. Baynes (trans.), Foreword by C.G. Jung, Bollingen Series 19, Princeton University Press, Princeton, NJ. 1st edition 1950, 2nd edition 1961, 3rd edition 1967.</p><p>Overview —<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Overview" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Overview</span></a> </p><p>Obstacles —<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Part_5#Obstacles" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Part_5#Obstacles</span></a> </p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryIntoInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryIntoInquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryDrivenSystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryDrivenSystems</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Semiositis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiositis</span></a> <a href="https://mathstodon.xyz/tags/ObstaclesToInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ObstaclesToInquiry</span></a></p>
Jon Awbrey<p>In the Way of Inquiry •&nbsp;Obstacles<br>• <a href="https://inquiryintoinquiry.com/2023/01/07/in-the-way-of-inquiry-obstacles-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2023/01</span><span class="invisible">/07/in-the-way-of-inquiry-obstacles-a/</span></a></p><p>❝Upon this first, and in one sense this sole, rule of reason, that in order to learn you must desire to learn, and in so desiring not be satisfied with what you already incline to think, there follows one corollary which itself deserves to be inscribed upon every wall of the city of philosophy:</p><p>❝Do not block the way of inquiry.❞</p><p>C.S. Peirce, Collected Papers, CP 1.135–136.<br>From an unpaginated ms. “F.R.L.”, c. 1899.</p><p>Often the biggest obstacle to learning more is the need to feel you already know. And yet there are some things you know, at least, compared to other things, and it makes sense to use what you already know well enough to learn what you need to know better. The question is, how do you know which is which? What test can tell what is known so well it can be trusted in learning what is not?</p><p>One way to test a supposed knowledge is to try and formulate it in such a way it can be taught to other people. A related test, harder in some ways but easier in others, is to try and formalize knowledge so completely that even a computer can go through the motions supposed to be definitive of its practice.</p><p>Both ways of testing a supposition of knowledge depend on putting knowledge in forms which can be communicated or transported from one medium or system of interpretation to another. Knowledge already in a concrete form takes no more than a simple reformation or transformation, otherwise it takes a more radical metamorphosis, from a wholly disorganized condition to the first inklings of a portable or sharable form.</p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryIntoInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryIntoInquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryDrivenSystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryDrivenSystems</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Semiositis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiositis</span></a> <a href="https://mathstodon.xyz/tags/ObstaclesToInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ObstaclesToInquiry</span></a></p>
Jon Awbrey<p>In the Way of Inquiry •&nbsp;Recircus<br>• <a href="https://inquiryintoinquiry.com/2023/01/06/in-the-way-of-inquiry-recircus-a/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2023/01</span><span class="invisible">/06/in-the-way-of-inquiry-recircus-a/</span></a></p><p>❝I must lie down where all the ladders start<br> In the foul rag and bone shop of the heart.❞</p><p>— W.B. Yeats<br>• <a href="https://web.archive.org/web/20200402124816/https://www.web-books.com/Classics/Poetry/Anthology/Yeats/Circus.htm" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">web.archive.org/web/2020040212</span><span class="invisible">4816/https://www.web-books.com/Classics/Poetry/Anthology/Yeats/Circus.htm</span></a></p><p>I have in mind circling back to a point in my project on Inquiry Driven Systems, namely, the chapter addressing various Obstacles to the Project.</p><p>Overview<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Overview" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Overview</span></a></p><p>Obstacles<br>• <a href="https://oeis.org/wiki/Inquiry_Driven_Systems_%E2%80%A2_Part_5#Obstacles" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Inquiry_Driven_S</span><span class="invisible">ystems_%E2%80%A2_Part_5#Obstacles</span></a> </p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryIntoInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryIntoInquiry</span></a> <a href="https://mathstodon.xyz/tags/InquiryDrivenSystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InquiryDrivenSystems</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Semiositis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiositis</span></a> <a href="https://mathstodon.xyz/tags/ObstaclesToInquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ObstaclesToInquiry</span></a></p>
Jon Awbrey<p>Systems of Interpretation • 1<br>• <a href="https://inquiryintoinquiry.com/2023/05/05/systems-of-interpretation-1-2/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2023/05</span><span class="invisible">/05/systems-of-interpretation-1-2/</span></a></p><p>Questions have arisen about the different styles of diagrams and figures used to represent triadic sign relations in Peircean semiotics. What do they mean? Which style is best? Among the most popular pictures some use geometric triangles while others use the three‑pronged graphs Peirce used in his logical graphs to represent triadic relations.</p><p>Diagrams and figures, like any signs, can serve to communicate the intended interpretants and thus to coordinate the conduct of interpreters toward the intended objects — but only in communities of interpretation where the conventions of interpretation are understood. Conventions of interpretation are by comparison far more difficult to communicate.</p><p>That brings us to the first question we have to ask about the possibility of communication in this area, namely, what conventions of interpretation are needed to make sense of these diagrams, figures, and graphs?</p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/LogicalGraphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LogicalGraphs</span></a> <a href="https://mathstodon.xyz/tags/RelationTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RelationTheory</span></a> <a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/Semiosis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Semiosis</span></a><br><a href="https://mathstodon.xyz/tags/DiagrammaticReasoning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DiagrammaticReasoning</span></a> <a href="https://mathstodon.xyz/tags/InterpretiveFrameworks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InterpretiveFrameworks</span></a> <a href="https://mathstodon.xyz/tags/ObjectiveFrameworks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ObjectiveFrameworks</span></a><br><a href="https://mathstodon.xyz/tags/SystemsOfInterpretation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SystemsOfInterpretation</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/TriadicRelations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TriadicRelations</span></a> <a href="https://mathstodon.xyz/tags/Visualization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Visualization</span></a></p>