toad.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Mastodon server operated by David Troy, a tech pioneer and investigative journalist addressing threats to democracy. Thoughtful participation and discussion welcome.

Administered by:

Server stats:

227
active users

#determinant

0 posts0 participants0 posts today
Alex Nelson<p>Here's a question: let \(M\) be a \(0\times 0\) matrix with entries in the field \(\mathbb{F}\). What is \(\det(M)\)?</p><p><a href="https://mathstodon.xyz/tags/Mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathematics</span></a> <a href="https://mathstodon.xyz/tags/Determinant" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Determinant</span></a> <a href="https://mathstodon.xyz/tags/LinearAlgebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LinearAlgebra</span></a> <a href="https://mathstodon.xyz/tags/Matrix" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Matrix</span></a></p>
Giuseppe Michieli<p>Murine <a href="https://mstdn.science/tags/betacoronavirus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>betacoronavirus</span></a> <a href="https://mstdn.science/tags/spike" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spike</span></a> protein: A major <a href="https://mstdn.science/tags/determinant" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>determinant</span></a> of <a href="https://mstdn.science/tags/neuropathogenic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuropathogenic</span></a> properties, <a href="https://etidiohnew.blogspot.com/2025/03/murine-betacoronavirus-spike-protein.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">etidiohnew.blogspot.com/2025/0</span><span class="invisible">3/murine-betacoronavirus-spike-protein.html</span></a></p>
ƧƿѦςɛ♏ѦਹѤʞ<p>What Numbers Do You Get by Iteratively Scaling a Matrix?<br><a href="https://www.youtube.com/watch?v=-uIwboK4nwE" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">youtube.com/watch?v=-uIwboK4nwE</span><span class="invisible"></span></a><br><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mastodon.social/tags/Sinkhorn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Sinkhorn</span></a> <a href="https://mastodon.social/tags/matrix" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>matrix</span></a> <a href="https://mastodon.social/tags/determinant" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>determinant</span></a> <a href="https://mastodon.social/tags/scaling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scaling</span></a> <a href="https://mastodon.social/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a></p>
Markus Redeker<p>Why is the determinant of the matrix \( \begin{pmatrix} a_1 &amp; b_1 \\ a_2 &amp; b_2 \end{pmatrix} \) equal to \( a_1 b_2 - a_2 b_1 \)?</p><p>I have found a geometrical interpretation (<a href="https://functor.network/user/414/entry/299" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">functor.network/user/414/entry</span><span class="invisible">/299</span></a>) and with it also started a blog.</p><p><a href="https://mathstodon.xyz/tags/WordsAndSomeFormulas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>WordsAndSomeFormulas</span></a> <a href="https://mathstodon.xyz/tags/Mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathematics</span></a> <a href="https://mathstodon.xyz/tags/MathEdu" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathEdu</span></a> <a href="https://mathstodon.xyz/tags/Determinant" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Determinant</span></a> <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geometry</span></a></p>
King Beauregard<p>DETERMINANTS AND THE BAREISS ALGORITHM</p><p>If you have to calculate determinants, and especially if you have to program an algorithm, investigate the Bareiss algorithm. It's remarkably fast; it limits the divisions so that it doesn't introduce needless rounding errors; and if your matrix elements are all integers, Bareiss is guaranteed to give you an integer result.</p><p>I've worked out a way to do Bareiss on pen and paper; here's a link to a PDF showing the technique:</p><p><a href="http://www.paprikash.com/lou/bareiss.pdf" rel="nofollow noopener" target="_blank"><span class="invisible">http://www.</span><span class="">paprikash.com/lou/bareiss.pdf</span><span class="invisible"></span></a></p><p><a href="https://c.im/tags/determinant" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>determinant</span></a> <a href="https://c.im/tags/bareiss" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bareiss</span></a></p>
pikuma.com<p>Just to give you an example, let's look at how we used the value of a matrix <a href="https://mastodon.gamedev.place/tags/determinant" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>determinant</span></a> in our recent Youtube video about "triangle rasterization":</p><p>📽️ <a href="https://youtu.be/k5wtuKWmV48" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="">youtu.be/k5wtuKWmV48</span><span class="invisible"></span></a></p><p>The idea is that we must identify and only paint the pixels that are considered to be "inside" a 2D triangle on the screen...</p>
pikuma.com<p>Let me repeat that again!</p><p>That denominator of this fraction is the "DETERMINANT" that *determines* if we might have a problem when solving our system.</p><p>Therefore, it is a <a href="https://mastodon.gamedev.place/tags/determinant" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>determinant</span></a> of that system.</p>