toad.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Mastodon server operated by David Troy, a tech pioneer and investigative journalist addressing threats to democracy. Thoughtful participation and discussion welcome.

Administered by:

Server stats:

227
active users

#generatedai

0 posts0 participants0 posts today
elenadotnet<p>le estoy cogiendo un asco tremendo a la FUENTE de las infografías generadas por AI que se usan en Linkedin… no puedo desverla, la detecto al momento, y me genera un rechazo brutal</p> <p>a las infografías también, obvio, porque son cosas muy fáciles de hacer a manita sin tener que pasar por genAI, pero la fuente en concreto me tiltea</p><br> <a class="hashtag" href="https://app.wafrn.net/dashboard/search/generated%20AI" rel="nofollow noopener" target="_blank">#generated-AI</a> <a class="hashtag" href="https://app.wafrn.net/dashboard/search/AI" rel="nofollow noopener" target="_blank">#AI</a> <a class="hashtag" href="https://app.wafrn.net/dashboard/search/cant%20take%20it%20no%20more" rel="nofollow noopener" target="_blank">#cant-take-it-no-more</a> <a class="hashtag" href="https://app.wafrn.net/dashboard/search/linkedin" rel="nofollow noopener" target="_blank">#linkedin</a> <a class="hashtag" href="https://app.wafrn.net/dashboard/search/linkedin%20cringe" rel="nofollow noopener" target="_blank">#linkedin-cringe</a>
Werner Kratz<p>Guten Rutsch! #2025 <a href="https://troet.cafe/tags/gutenrutsch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>gutenrutsch</span></a> <a href="https://troet.cafe/tags/gutenrutsch2025" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>gutenrutsch2025</span></a> <a href="https://troet.cafe/tags/happynew2025" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>happynew2025</span></a> <a href="https://troet.cafe/tags/snail" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>snail</span></a> <a href="https://troet.cafe/tags/schnecke" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>schnecke</span></a> <a href="https://troet.cafe/tags/generated" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>generated</span></a> <a href="https://troet.cafe/tags/generatedAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>generatedAI</span></a></p>
sadele2<p>Eight photos that make us question what we see</p><p>"The effect that scares me most is not that we'll be fooled by fake photos but that we'll ignore the real ones" – how photographers are dealing with shifting perceptions of reality.</p><p>3 current photo exhibitions mentioned in the article, in Norwich, Amsterdam, &amp; Maastricht </p><p><a href="https://mastodon.social/tags/Photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Photography</span></a> <a href="https://mastodon.social/tags/GenerativeAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenerativeAI</span></a> <a href="https://mastodon.social/tags/GeneratedAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GeneratedAI</span></a> <a href="https://mastodon.social/tags/AIPhoto" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIPhoto</span></a> </p><p><a href="https://www.bbc.com/culture/article/20240711-eight-photos-that-make-us-question-what-we-see" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">bbc.com/culture/article/202407</span><span class="invisible">11-eight-photos-that-make-us-question-what-we-see</span></a></p>
FIZ ISE Research Group<p>At <a href="https://sigmoid.social/tags/ESWC2024" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ESWC2024</span></a> we presented our poster "Gotta Catch’em All: From Data Silos to a Knowledge Graph" with the <span class="h-card" translate="no"><a href="https://nfdi.social/@nfdi4culture" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>nfdi4culture</span></a></span> data harvesting pipeline which is supposed to harvest, clean, map &amp; integrate data into the NFDI4Culture-KG. Joint work of <span class="h-card" translate="no"><a href="https://fedihum.org/@sashabruns" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>sashabruns</span></a></span> <span class="h-card" translate="no"><a href="https://fedihum.org/@tabea" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>tabea</span></a></span> <span class="h-card" translate="no"><a href="https://mozilla.social/@jalle" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>jalle</span></a></span> <span class="h-card" translate="no"><a href="https://blog.epoz.org/" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>epoz</span></a></span> <span class="h-card" translate="no"><a href="https://sigmoid.social/@lysander07" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>lysander07</span></a></span> Linnea Söhn &amp; Torsten Schrade</p><p>paper: <a href="https://zenodo.org/records/11505790" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">zenodo.org/records/11505790</span><span class="invisible"></span></a></p><p><a href="https://sigmoid.social/tags/knowledgegraphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>knowledgegraphs</span></a> <a href="https://sigmoid.social/tags/nfdirocks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>nfdirocks</span></a> <a href="https://sigmoid.social/tags/semanticweb" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>semanticweb</span></a> <a href="https://sigmoid.social/tags/poster" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>poster</span></a> <a href="https://sigmoid.social/tags/generatedAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>generatedAI</span></a> <a href="https://sigmoid.social/tags/pokemon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pokemon</span></a> <span class="h-card" translate="no"><a href="https://wisskomm.social/@fiz_karlsruhe" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>fiz_karlsruhe</span></a></span></p>
Miguel Afonso Caetano<p><a href="https://tldr.nettime.org/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://tldr.nettime.org/tags/GenerativeAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenerativeAI</span></a> <a href="https://tldr.nettime.org/tags/GeneratedAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GeneratedAI</span></a>: "The advent of generative AI images has completely disrupted the art world. Distinguishing AI generated images from human art is a challenging problem whose impact is growing over time. A failure to address this problem allows bad actors to defraud individuals paying a premium for human art and companies whose stated policies forbid AI imagery. It is also critical for content owners to establish copyright, and for model trainers interested in curating training data in order to avoid potential model collapse.</p><p>There are several different approaches to distinguishing human art from AI images, including classifiers trained by supervised learning, research tools targeting diffusion models, and identification by professional artists using their knowledge of artistic techniques. In this paper, we seek to understand how well these approaches can perform against today's modern generative models in both benign and adversarial settings. We curate real human art across 7 styles, generate matching images from 5 generative models, and apply 8 detectors (5 automated detectors and 3 different human groups including 180 crowdworkers, 4000+ professional artists, and 13 expert artists experienced at detecting AI). Both Hive and expert artists do very well, but make mistakes in different ways (Hive is weaker against adversarial perturbations while Expert artists produce higher false positives). We believe these weaknesses will remain as models continue to evolve, and use our data to demonstrate why a combined team of human and automated detectors provides the best combination of accuracy and robustness." <a href="https://arxiv.org/abs/2402.03214" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2402.03214</span><span class="invisible"></span></a></p>
LukaszD<p>O kurdesz. Wygenerowałem go za pomocą <a href="https://pol.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://pol.social/tags/generatedAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>generatedAI</span></a> <a href="https://pol.social/tags/birds" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>birds</span></a> <a href="https://pol.social/tags/ptak" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ptak</span></a></p>