toad.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Mastodon server operated by David Troy, a tech pioneer and investigative journalist addressing threats to democracy. Thoughtful participation and discussion welcome.

Administered by:

Server stats:

230
active users

#transferlearning

0 posts0 participants0 posts today
Natural Gas Industry B updates<p>Researchers propose a transfer learning strategy for fault identification of deep fault-karst <a href="https://mastodon.social/tags/carbonate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>carbonate</span></a>. <a href="https://mastodon.social/tags/openaccess" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>openaccess</span></a> at <a href="https://www.sciencedirect.com/science/article/pii/S2352854025000221" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">sciencedirect.com/science/arti</span><span class="invisible">cle/pii/S2352854025000221</span></a>. <a href="https://mastodon.social/tags/Seismicfault" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Seismicfault</span></a> <a href="https://mastodon.social/tags/Transferlearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Transferlearning</span></a> <a href="https://mastodon.social/tags/ArtificialIntelligence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ArtificialIntelligence</span></a></p>
UK<p><a href="https://www.europesays.com/uk/134411/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">europesays.com/uk/134411/</span><span class="invisible"></span></a> Smart neural network and cognitive computing process for multi task nuclei detection segmentation and classification in breast cancer histopathology images <a href="https://pubeurope.com/tags/BreastCancer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BreastCancer</span></a> <a href="https://pubeurope.com/tags/Cancer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Cancer</span></a> <a href="https://pubeurope.com/tags/ClassificationModel" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ClassificationModel</span></a> <a href="https://pubeurope.com/tags/Computing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Computing</span></a> <a href="https://pubeurope.com/tags/DeepLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DeepLearning</span></a> <a href="https://pubeurope.com/tags/HistopathologyImages" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HistopathologyImages</span></a> <a href="https://pubeurope.com/tags/HumanitiesAndSocialSciences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HumanitiesAndSocialSciences</span></a> <a href="https://pubeurope.com/tags/multidisciplinary" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multidisciplinary</span></a> <a href="https://pubeurope.com/tags/NucleiSegmentation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NucleiSegmentation</span></a> <a href="https://pubeurope.com/tags/Science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Science</span></a> <a href="https://pubeurope.com/tags/Technology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Technology</span></a> <a href="https://pubeurope.com/tags/TransferLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TransferLearning</span></a> <a href="https://pubeurope.com/tags/UK" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UK</span></a> <a href="https://pubeurope.com/tags/UnitedKingdom" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UnitedKingdom</span></a></p>
rexi<p><a href="https://phys.org/news/2024-12-ai-world-temperatures-3c-faster.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">phys.org/news/2024-12-ai-world</span><span class="invisible">-temperatures-3c-faster.html</span></a></p><p>(wishing this were hallucination..)</p><p>Key findings</p><p>Using <a href="https://mastodon.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a>-based <a href="https://mastodon.social/tags/transferlearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>transferlearning</span></a>, the researchers analyzed data from 10 different <a href="https://mastodon.social/tags/climatemodels" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>climatemodels</span></a> to predict temperature increases and found:</p><p> ‣ 34 regions are likely to exceed 1.5°C of warming by 2040.</p><p>‣ 31 of these 34 regions are expected to reach 2°C of warming by 2040.</p><p> ‣ 26 of these 34 regions are projected to surpass 3°C of warming by 2060.</p><p>Barnes*, Diffenbaugh and Seneviratne<br>DOI10.1088/1748-9326/ad91ca</p>
Judith van Stegeren<p>This is such a cool dataset: 22 different robots demonstrating 527 skills through a collaboration between 21 research institutions.</p><p>And the GIFs of all these different robots applying basic motor skills are adorable.</p><p><a href="https://robotics-transformer-x.github.io/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">robotics-transformer-x.github.</span><span class="invisible">io/</span></a></p><p><a href="https://fosstodon.org/tags/transferlearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>transferlearning</span></a> <a href="https://fosstodon.org/tags/datasets" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datasets</span></a> <a href="https://fosstodon.org/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Daniel Fischer<p>Deep <a href="https://scicomm.xyz/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> for <a href="https://scicomm.xyz/tags/meteor" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>meteor</span></a> monitoring - advances with <a href="https://scicomm.xyz/tags/TransferLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TransferLearning</span></a> and gradient-weighted class activation mapping: <a href="https://arxiv.org/abs/2310.16826" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2310.16826</span><span class="invisible"></span></a> -&gt; long thread <a href="https://nitter.net/Eloy_PeAs/status/1717528486657597883" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">nitter.net/Eloy_PeAs/status/17</span><span class="invisible">17528486657597883</span></a></p>
Robert Lowry<p>Want to share a milestone on a <a href="https://hachyderm.io/tags/ml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ml</span></a> <a href="https://hachyderm.io/tags/project" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>project</span></a> I’ve been working on for a while on the side. I’m working on a <a href="https://hachyderm.io/tags/computervision" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computervision</span></a> application for <a href="https://hachyderm.io/tags/chess" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>chess</span></a> to detect the game state from a photo.<br>I used <a href="https://hachyderm.io/tags/transferlearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>transferlearning</span></a> to fine tune a <a href="https://hachyderm.io/tags/convolutionalneuralnetwork" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>convolutionalneuralnetwork</span></a> with a new head for <a href="https://hachyderm.io/tags/regression" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>regression</span></a> to predict the four corners of the board.<br>I found synthetic datasets online (~6k images) and labeled ~1k real photos. I trained the model with a mix of random augmentations and projections with small errors.</p>