toad.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Mastodon server operated by David Troy, a tech pioneer and investigative journalist addressing threats to democracy. Thoughtful participation and discussion welcome.

Administered by:

Server stats:

227
active users

#bayes

0 posts0 participants0 posts today
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #386 {bayestestR} Evaluating Evidence and Making Decisions using Bayesian Statistics by <span class="h-card" translate="no"><a href="https://scicomm.xyz/@mattansb" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>mattansb</span></a></span> </p><p>Thoughts: Want to start using Bayesian stats? Here is a quick but comprehensive guide in <a href="https://mastodon.social/tags/R" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>R</span></a></p><p><a href="https://mastodon.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayesian</span></a> <a href="https://mastodon.social/tags/bayes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayes</span></a> <a href="https://mastodon.social/tags/mcmc" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mcmc</span></a> <a href="https://mastodon.social/tags/easystats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>easystats</span></a> <a href="https://mastodon.social/tags/guide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>guide</span></a></p><p><a href="https://mattansb.github.io/bayesian-evidence/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">mattansb.github.io/bayesian-ev</span><span class="invisible">idence/</span></a></p>
Daniel Hoffmann🌻<p>Substances that slow down migrating cancer cells could be anti-metastatic drug candidates. In this preprint we describe the first computational model for quantitative analysis of cell migration assays for substance screening. <a href="https://mathstodon.xyz/tags/bayes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayes</span></a> <br><a href="https://mathstodon.xyz/tags/cellmigration" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cellmigration</span></a> <a href="https://mathstodon.xyz/tags/metastasis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>metastasis</span></a><br><a href="https://www.biorxiv.org/content/10.1101/2025.06.12.659342v1" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">biorxiv.org/content/10.1101/20</span><span class="invisible">25.06.12.659342v1</span></a></p>
Ross Gaylermaths/Bayes/probability/optimisation/inference questions
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #295 The Fallacy of the Null-Hypothesis Significance Test</p><p>Thoughts: "the [..] aim of a scientific experiment is not to precipitate decisions, but to make an appropriate adjustment in the degree to which one accepts, or believes, the hypothesis"</p><p><a href="https://mastodon.social/tags/NHST" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NHST</span></a> <a href="https://mastodon.social/tags/Bayes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Bayes</span></a> <a href="https://mastodon.social/tags/ConfidenceIntervals" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ConfidenceIntervals</span></a> <a href="https://mastodon.social/tags/pvalues" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pvalues</span></a> <a href="https://mastodon.social/tags/significance" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>significance</span></a> <a href="https://mastodon.social/tags/testing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>testing</span></a> <a href="https://mastodon.social/tags/hypotheses" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hypotheses</span></a> <a href="https://mastodon.social/tags/likelihood" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>likelihood</span></a> <a href="https://mastodon.social/tags/critique" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>critique</span></a> <a href="https://mastodon.social/tags/fallacy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fallacy</span></a></p><p><a href="http://stats.org.uk/statistical-inference/Rozeboom1960.pdf" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">stats.org.uk/statistical-infer</span><span class="invisible">ence/Rozeboom1960.pdf</span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #293 The Bayesian Bootstrap</p><p>Thoughts: I need to think more on where bootstrapping makes sense in a bayesian setting. But here's a tutorial.</p><p><a href="https://mastodon.social/tags/stats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>stats</span></a> <a href="https://mastodon.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayesian</span></a> <a href="https://mastodon.social/tags/bayes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayes</span></a> <a href="https://mastodon.social/tags/bootstrap" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bootstrap</span></a> <a href="https://mastodon.social/tags/resampling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>resampling</span></a> </p><p><a href="https://towardsdatascience.com/the-bayesian-bootstrap-6ca4a1d45148/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">towardsdatascience.com/the-bay</span><span class="invisible">esian-bootstrap-6ca4a1d45148/</span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #279 Diagnosing the Misuse of the Bayes Factor in Applied Research</p><p>Thoughts: As with NHST, Null Hypothesis Bayesian Testing (NHBT) can also be easily misunderstood.</p><p><a href="https://mastodon.social/tags/bayes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayes</span></a> <a href="https://mastodon.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayesian</span></a> <a href="https://mastodon.social/tags/NHBT" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NHBT</span></a> <a href="https://mastodon.social/tags/misuse" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>misuse</span></a> <a href="https://mastodon.social/tags/QRPs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QRPs</span></a> <a href="https://mastodon.social/tags/error" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>error</span></a></p><p><a href="https://journals.sagepub.com/doi/10.1177/25152459231213371" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">journals.sagepub.com/doi/10.11</span><span class="invisible">77/25152459231213371</span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/stats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>stats</span></a> help: is there any online tutorial for ordinal CFA with {blavaan}?</p><p><a href="https://mastodon.social/tags/bayes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayes</span></a> <a href="https://mastodon.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayesian</span></a> <a href="https://mastodon.social/tags/blavaan" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>blavaan</span></a> <a href="https://mastodon.social/tags/lavaan" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>lavaan</span></a> <a href="https://mastodon.social/tags/cfa" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cfa</span></a> <a href="https://mastodon.social/tags/sem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sem</span></a> <a href="https://mastodon.social/tags/tutorial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tutorial</span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #272 Different meanings of p-values</p><p>Thoughts: A riveting (&amp; confusing) discussion on the definitions &amp; properties of p-values. W/ guest appearance from some big names in stats, from all camps.</p><p><a href="https://mastodon.social/tags/NHST" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NHST</span></a> <a href="https://mastodon.social/tags/pvalues" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pvalues</span></a> <a href="https://mastodon.social/tags/divergence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>divergence</span></a> <a href="https://mastodon.social/tags/bayes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayes</span></a> <a href="https://mastodon.social/tags/compatibility" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compatibility</span></a></p><p><a href="https://statmodeling.stat.columbia.edu/2023/04/14/4-different-meanings-of-p-value-and-how-my-thinking-has-changed/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statmodeling.stat.columbia.edu</span><span class="invisible">/2023/04/14/4-different-meanings-of-p-value-and-how-my-thinking-has-changed/</span></a></p>
pglpm<p><a href="https://c.im/tags/bayesian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayesian</span></a> <a href="https://c.im/tags/bayes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayes</span></a></p>
Daniel Lakeland<p>I got an email from the author promoting this benchmark comparison of <a href="https://mastodon.sdf.org/tags/Julialang" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Julialang</span></a> + StanBlocks + <a href="https://mastodon.sdf.org/tags/Enzyme" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Enzyme</span></a> vs <a href="https://mastodon.sdf.org/tags/Stan" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Stan</span></a> runtimes.</p><p>StanBlocks is a macro package for Julia that mimics the structure of a Stan program. This is the first I've heard about it.</p><p>A considerable number of these models are faster in Julia than Stan, maybe even most of them. </p><p><a href="https://nsiccha.github.io/StanBlocks.jl/performance.html" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">nsiccha.github.io/StanBlocks.j</span><span class="invisible">l/performance.html</span></a></p><p><a href="https://mastodon.sdf.org/tags/bayes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayes</span></a> <a href="https://mastodon.sdf.org/tags/bayesian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayesian</span></a> <a href="https://mastodon.sdf.org/tags/statistics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statistics</span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #232 Bayesian Interval-Null Testing</p><p>Thoughts: @JASPStats has a module for Equivalence Tests that include Bayesian Overlapping and Non-Overlapping Hypothesis Testing.</p><p><a href="https://mastodon.social/tags/equivalencetests" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equivalencetests</span></a> <a href="https://mastodon.social/tags/bayesfactors" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayesfactors</span></a> <a href="https://mastodon.social/tags/jasp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>jasp</span></a> <a href="https://mastodon.social/tags/noeffect" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>noeffect</span></a> <a href="https://mastodon.social/tags/bayes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayes</span></a><br> <a href="https://jasp-stats.org/2020/06/02/frequentist-and-bayesian-equivalence-testing-in-jasp/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">jasp-stats.org/2020/06/02/freq</span><span class="invisible">uentist-and-bayesian-equivalence-testing-in-jasp/</span></a></p>
Ulrike Hahn<p>„calling something logic doesn’t make it so. Calling someone rational doesn’t make it so“ </p><p>I’ve been thinking for a while that, as someone who works on human rationality and rational argument, I should write a blog post on what that actually means (and, maybe more importantly, doesn‘t mean).</p><p>in the meantime, though, I found much to agree with in this piece: </p><p>Title: The magical thinking of guys who love logic <br><a href="https://theoutline.com/post/7083/the-magical-thinking-of-guys-who-love-logic" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">theoutline.com/post/7083/the-m</span><span class="invisible">agical-thinking-of-guys-who-love-logic</span></a> </p><p><a href="https://fediscience.org/tags/logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>logic</span></a> <a href="https://fediscience.org/tags/rationality" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rationality</span></a> <a href="https://fediscience.org/tags/argument" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>argument</span></a> <a href="https://fediscience.org/tags/Bayes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Bayes</span></a></p>
Replied in thread

@AeonCypher @paninid

"A p-value is an #estimate of p(Data | Null Hypothesis). " – not correct. A p-value is an estimate of

p(Data or other imagined data | Null Hypothesis)

so not even just of the actual data you have. Which is why p-values depend on your stopping rule (and do not satisfy the "likelihood principle"). In this regard, see Jeffreys's quote below.

Imagine you design an experiment this way: "I'll test 10 subjects, and in the meantime I apply for a grant. At the time the 10th subject is tested, I'll know my application's outcome. If the outcome is positive, I'll test 10 more subjects; if it isn't, I'll stop". Not an unrealistic situation.

With this stopping rule, your p-value will depend on the probability that you get the grant. This is not a joke.

"*What the use of P implies, therefore, is that a hypothesis that may be true may be rejected because it has not predicted observable results that have not occurred.* This seems a remarkable procedure. On the face of it the fact that such results have not occurred might more reasonably be taken as evidence for the law, not against it." – H. Jeffreys, "Theory of Probability" § VII.7.2 (emphasis in the original) <doi.org/10.1093/oso/9780198503>.

OUP AcademicTheory of ProbabilityAbstract. Jeffreys' Theory of Probability, first published in 1939, was the first attempt to develop a fundamental theory of scientific inference based on